MEASUREMENT OF THE FOCAL LENGTH OF A CONCAVE MIRROR

Apparatus

Concave mirror, screen, lamp-box with crosswire.

Procedure

1. Place the lamp-box well outside the approximate focal length - see notes.
2. Move the screen until a clear inverted image of the crosswire is obtained.
3. Measure the distance u from the crosswire to the mirror, using the metre stick.
4. Measure the distance v from the screen to the mirror.
5. Calculate the focal length of the mirror using $\frac{1}{f}=\frac{1}{u}+\frac{1}{v}$.
6. Repeat this procedure for different values of u.
7. Calculate f each time and then find an average value.

Results

u / cm	$\frac{1}{u} / \mathrm{cm}^{-1}$	v / cm	$\frac{1}{v} / \mathrm{cm}^{-1}$	$\frac{1}{f} / \mathrm{cm}^{-1}$	f / cm

Average $f=$

Notes

The approximate method for finding the focal length is recommended as a starting point for this experiment. The approximate method is described in the Appendix.

A microscope lamp makes a very suitable strong light source. Cover the glass of the lamp with a piece of tracing paper. Use 'peel-and-stick' letters to create an 'object' on the tracing paper.

