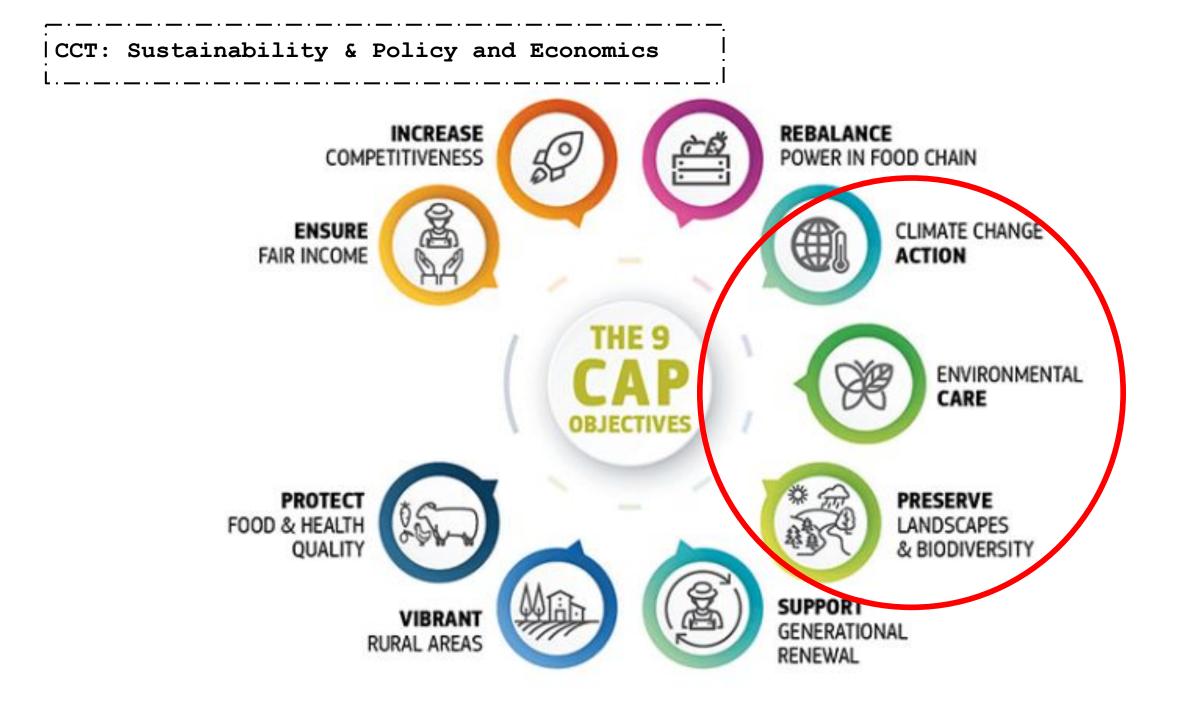
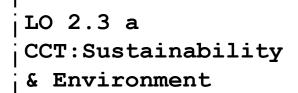

Outline of Presentation

- Context Title of IIS
- Water Quality
- Farmyard Issues
- Silage
- FYM/ Slurry
- Other Nutrient & Sediment hotspots
- Ideas & Tools for investigations





Context

- IIS Exploring Nutrition & Nutrients The importance to Irish Agriculture of their Effective Use and Management
- Grass based system Green Image
- Derogation New Regulations 40% of Dairy Farms inadequate storage
- Cross compliance
- New CAP in 2023
- Biodiversity, Water Quality and Gaseous emissions

Water Quality Catchment Scale

LO 2.3 a CCT:Sustainability & Environment

What will the 'bugs' tell us about water quality?

Pollution sensitive species

Mayfly

Cased Caddis

Stonefly

Freshwater Shrimp

Leech

Blackfly Larvae

LO 2.3 a CCT:Sustainability & Environment

Main Pressures/ Pathways

Phosphate (Run-off)

Nitrate (Leaching) (Ammonium – Peat)

Sediment (Bare soil)

Toxic Effects (Herbicides & Spent Dip)

Water quality pressures identified in PAA's - Nationally

To date diffuse P, N and sediment losses account for 73% of the pressures identified in PAA's where investigations have occurred.

P Loss (Diffuse)	31%
N Loss (Diffuse)	16%
Sedimentation	26%
Point Source Losses	15%
Toxicity and Pesticides	6%
Ammonium	6%

Table 5: Water quality pressures identified in PAA's

Land management practices account for 45% of the issues identified.

Land Management Issues	High	Moderate	Low	Total
P loss through overland flow	390	295	68	753
Drinking points & stream fencing	297	242	89	628
Buffers	290	287	98	675
N leaching from light soils	190	120	29	339
Sediment loss	139	84	18	241
Farm roads, gateways and underpass	134	89	35	258
Drain cleaning & maintenance	130	101	44	275
Herbicide /pesticide and sheep dip use	116	96	36	248
Rock outcrops/karst features	54	36	5	95
River bank erosion	52	23	11	86
Drinking troughs	50	68	58	176
Culverts/river crossings	39	32	9	80
Unsuitable drainage delivering nutrient and/or sediment	38	29	7	74
Field boundary management	32	23	21	76
Supplementary feeding and sacrifice paddocks	28	57	20	105

LO 2.3 a, 1.2 c, 1.2 d

Nutrient management practices account for 34% of the issues.

Nutrient Management Issues	High	Moderate	Low	Total
Preparation and implementation of NMP	345	243	112	700
Organic manure timing, location and method	264	237	48	549
Achieving appropriate soil fertility (Lime P&K)	211	199	53	463
Weather and fertiliser management	179	121	45	345
Identify and Manage Critical Source Areas (CSA's)	177	130	15	322
Timing - early & Late N and P	161	120	29	310
Fertiliser type	83	98	70	251
Sloped fields	64	113	46	223
Chemical fertiliser spreading	37	70	25	132
Fertiliser rates	21	30	20	71
Correct management of high OM soils	18	35	35	88
Other	13	9	6	28
Recorded import/export of organic manures	4	5	8	17

LO 2.3 a, 1.2 c, 1.2 d

Farmyard management practices account for 21% of the issues.

Farmyard Management Issues	High	Moderate	Low	Total	
Clean and grey water management	171	173	107	<mark>4</mark> 51	
Silage pits and effluent storage	144	72	34	250	
Loose housing and FYM storage	134	130	71	335	
Round bale storage	116	138	83	337	
Dirty yards	100	101	20	221	
Slurry storage	91	67	40	198	
Drain connection from yard to water	90	42	10	142	
Pesticide storage and diesel/oil tanks	17	49	27	93	
Cattle and/or sheep handling facilities	16	27	24	67	
Other	6	9	4	19	

LO 2.3 a, 4.3.3 b

Farmyards – Soiled Water

- Has a biochemical oxygen demand (BOD) of less than 2500 mg l-1 and less than 1% dry matter (DM) content (S.I. No.31 of 2014) and is stored separate from slurry.
- Soiled water must be collected and kept separate to slurry on all holdings
- From 1st Jan 2022 spreading of soiled water will be prohibited between 15th November and 15th January
- 4 Weeks soiled water storage in place by 31st December 2024

LO 2.3 a, 4.3.3 b CCT: Environment, Sustainability

Farmyard Issues

- Highest risk attributed to ditches connecting farm yards and outlets to streams.
- Legacy P accumulated in ditch sediment from yards and at outlets over time.

Science of The Total Environment Volume 703, 10 February 2020, 134556

Ranking connectivity risk for phosphorus loss along agricultural drainage ditches

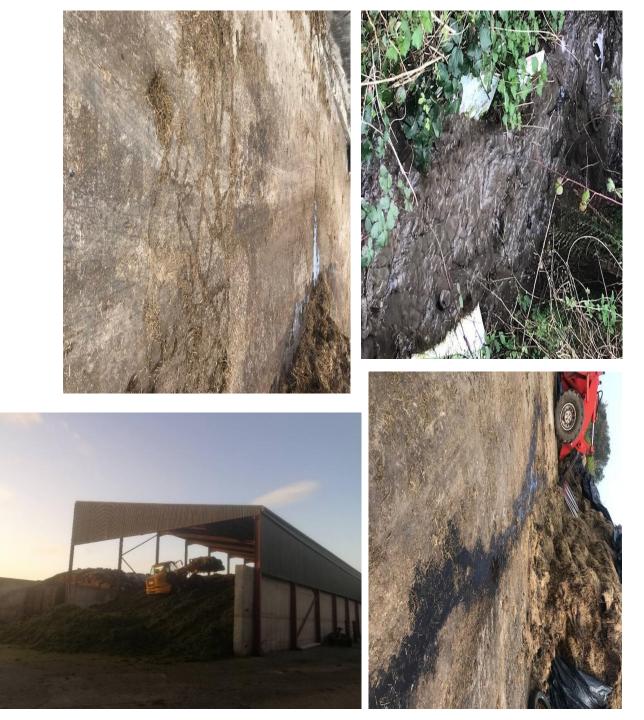
Thomas Moloney ♀ ⊠, Owen Fenton ⊠, Karen Daly ⊠

LO 2.3 a, 4.3.3 b CCT: Environment, Policy and Economics

Round Bales

• Do not store within 20m of waters, incl. dry drains

Wet bales, with a low dry matter – possible leakage



• Watercourse in the background, less than 5m from the bales, and bales also located on very wet soil

LO 2.3 c, 4.3.3 b, 4.3.2 a Silage Pits

- Having adequate storage for silage effluent
- Concrete base is sound with no cracking
- Effluent channels are clear and working properly
- Silage face is cleaned often minimising blockages of the effluent channels
- Waste silage is stored correctly

LO 2.3 a, 2.3 c, 4.3.3 b CCT: Environment, Policy and Economics Farmyard Manure

- FYM must not be stored or landspread between 1 Nov to 31 Jan (inclusive) in Donegal and Leitrim and between 1 Nov to 15 Jan in Sligo
- Collect all organic fertilisers, effluents and soiled waters produced in buildings and yards in a way that will prevent run-off or seepage, directly or indirectly, into groundwater and surface water
- Do not spread within 5m of surface waters (extended to 10 m – 2 week either side of the closed period)

Farmyard Manure

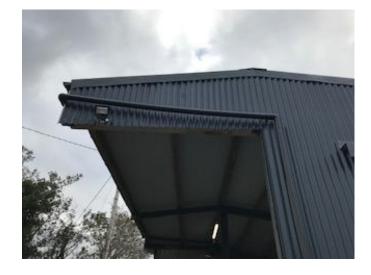
- Any surface watercourse where the slope towards the watercourse exceeds 10% (10m)
- Storage of FYM in a field must be at least 20 m away from all surface waters
- When spreading consider
 - Surface waters
 - Soil conditions
 - Slope of the field
 - Adequate buffer
 - Weather

Overgrazing of Peat soils

- Overgrazing exposes bare peat
- Sediment lost with heavy rainfall
- Takes a long time for the vegetation to recover

LO 2.3 a, 2.2.2 a, 2.2.2 d

Exposed Soil – Rutting & Poaching



LO 4.3.3 b Yards, Clean and Dirty water

Farmyard Pinch Points

Milking Facilities

LO 2.3a,

4.3.3 b

- Soiled Water Management
- Dairy Washings

<u>Yards</u>

- Handling Facilities
- Fuel Points Bunded
- Concrete Surface
 Soundness

Clean Water Controls

- Drainpipes
- Guttering
- Diversion Manholes

<u>Sheds</u>

- Slurry Storage
- Bedding Materials
- Seepage

Silage Pits

- Silage Effluent
- Silage Waste
- Effluent Collection

LO 2.3a, 4.3.3 b

Yards, Clean and Dirty water

LO 2.3a, 2.2.2 a, CCT: Environment, Policy and Economics

Drainage

- Any maintenance to surface water drains should only be carried out during the months July to September.
- Fish and their spawning grounds are protected under the Fisheries Acts (1959 – 2010).

 In-stream works should not be carried out without prior consultation and approval of Inland Fisheries Ireland (www.fisheriesireland.ie)

LO 4.3.3 b, CCT: Environment, Policy and Economics

Drinking Points

• Water troughs to be located at least 20m from watercourses on farms with grassland stocking rates above 170 kg N/ha from 1st January 2021

LO 2.3a, CCT: Environment, Policy and Economics

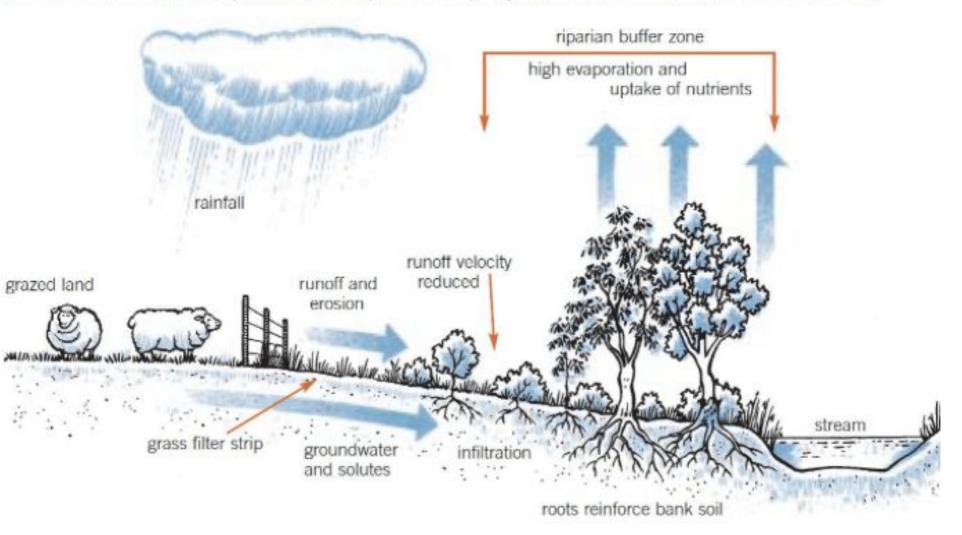
<u>Tillage</u>

 No ploughing or tilling may take place within 2m of a watercourse (stream/river) marked on the modern 1:5000 OSI scale OSI map or better except in the case of grassland reseeding or establishment.

LO 2.3a, CCT: Environment, Policy and Economics

<u>Tillage</u>

- Filter Fences
- Geotextile Mesh
- Inserted 8 inch into the ground and Staked
- V or W shape to slow the flow, so water doesn't flow in a straight line
- Short Term Measure
- Capturing the Sediment and Phosphate

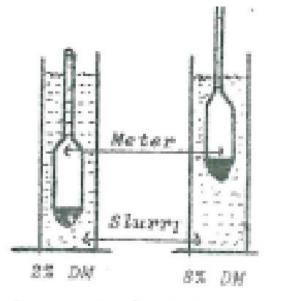


LO 2.3a, CCT: Environment, Policy and Economics

Processes that occur in the Riparian Margin to improve water quality

Processes that occur in the riparian zone to improve water quality and stabilise streambanks. Illustration Paul Lennon.

LO 2.3 a, 1.2 c, 1.2 d


<u>Approximate N, P, and K content of cattle slurry in kg/10m³</u>

Cattle Slurry						
N	P	K	% Dry Matter			
15	1.5	20	2			
25	3	30	4			
35	4.5	40	6			
40	6	50	8			
45	7.5	55	10			
47	9	60	12			

½ dry	matter	Concentration
1 -	4	low
4 -	7	medium
7 -	10	high

Table J: Approximate total N. P and K content of Cattle and Pig Slurry in kg/10m³ (lbs/1000gals) at various dry matter let

Gatt	tle Slurry	-		P	ig Slurry	
N	I,	K	% Dry Matter	N	Þ	К
15	1.5	20	- 8 -	20	3	1.9
15	3	. 30	- 4 -	30	8	17
15	9.5	40	6 -	40	12	20
	0	50	- 8 -	50	27	22
17	7.5	22	-10 -	55	22	32
11	y	00	-13 -	60	26	2.2

LO 2.3 a, 1.2 c, 1.2 d

Available Nutrient Content & Guide Value (€) of Organic Fertilisers 2021

Organic Fertiliser Type	N kg/m ³ (units/1,000 gal) ⁷	P kg/ m ³ (units/1,000 gal) ^{6,7}	K kg/ m ³ (units/1,000 gal) ⁷	Value €/ m ³ Or (€/ 1,000 gal) ⁴ ;
Liquid Manures				
Cattle (6% DM) (SI 605,2017) 1	2.0 (18)	0.8 (7)	3.5 (32)	6.8 (31)
Cattle (6% DM) (Actual) 2	1.0 (9)	0.6 (5)	3.5 (32)	5.1 (23)
Pig (4% DM) ³	2.1 (19)	0.8 (7)	1.9 (20)	5.9 (27)
Soiled Water	0.48 (4)	0.08 (0.7)	0.6 (5)	1.2 (5)
Solid Manures	N kg/t ¹ (units/t)	P kg/t (units/t)	K kg/t (units/t)	Value €/ton
Dungstead Manure	1.4 (3)	0.9 (2)	4.2 (8)	7.0
Farmyard Manure	1.35 (3)	1.2 (2)	6.0 (12)	9.0
Poultry ³				
Broiler / deep litter	14 (28)	6.0 (12)	18.0 (36)	43
Layers (30% DM)	6.85 (14)	2.9 (6)	6.0 (12)	19
Layers (55% DM)	11.5(23)	5.5 (11)	12.0 (24)	35
Turkeys	14 (28)	13.8 (28)	12.0 (24)	57
Spent Mushroom Compost	1.6 (3)	1.5 (3)	8.0 (16)	12

Nitrogen availability based on Nitrates Directive SI 605, 2017 (Cattle slurry total N of 5.0kg & 40% availability). Conversion - kg by 2 = units

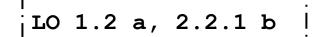
² The actual value of N in Cattle slurry (Green Book) is approx. 9 units/1,000 gallon (Based on total N of 2.4kgN/m³ @ 40% N availability by LESS application).

Spring application of organic manures is required to maximize N recovery. Manures should be tested to determine manure nutrient content

³ Incorporation of high N manures within 2 to 6hrs after application assume 50% N availability

⁴ Value of N = €1.04/kg. P = €2.32/kg, K = €0.83/kg for 2021 (Nutrient values based on price / volume of range of fertiliser products).

⁵ Cost of spreading & transport not included. ⁶Reduce P availability to 50% on P index 1 & 2 soils.


⁷ Values under units/1,000gals or per ton have been rounded to closest unit.

Updated 26th January, 2021

LO 2.3 a, 1.2 a		PARAMETER	High Status EQS (rivers)	Good Status EQS (rivers)
J		Ammonia	0.04mg N/l	0.065mg N/l
<u>Nitrate, P and</u>	Ammonia St	rips ^{Ortho P}	0.025mg P/I	0.035mg P/I
			H / Pour Eau Douce 1: Eau de Mer	
Repression Martine Combo Test Strip If and the Strip I and the Strip If a strip I and the Strip I and the Strip If a strip I and the Strip I and the Strip I and the Strip I If a strip I and the Strip I and the Strip I and the Strip I If a strip I and the Strip I and the Strip I If a strip I and the Strip I and the Strip I If a strip I and the Strip I and the Strip I If a strip I and the Strip I and the Strip I If a strip I and the Strip I and the Strip I If a strip I and the Strip I and the Strip I If a strip I and the Strip I and the Strip I If a strip I and the Strip I and the Strip I If a strip I and the Strip I and the Strip I If a strip I and the Strip I and the Strip I If a strip I and the Strip I and the Strip I If a strip I and the Strip I and the Strip I If a strip I and the Strip I and the Strip I If a strip I and the Strip I and the Strip I If a strip I and the Strip I and the Strip I If a strip I and the Strip I and the Strip I If a strip I and the Strip I and the Strip I If a strip I and the Strip I and the Strip I and the Strip I If a strip I and the Strip I and the Strip I and the Strip I If a strip I and the Strip I	nto Vation	TE	T STRIPS	
Nationaria de la calcolaria de la calcol	ispad color (see intow) with color fulls are expressed itsphotous. To get phate, multiply	- Measu an aqu	NH ₃ /NH ₄	

- Average phosphate concentrations of less than 0.025 mg/l P and less than 0.035 mg/l P have been established in Ireland as legally binding national standards (EQS) to support the achievement of high and good ecological status respectively.
- For water, **1 ppm = approximately 1 mg/L** (also written as mg/l) of contaminant in water
- To convert from units of nitrogen (NO3-N) to nitrate (NO3), multiple the value by 4.427
- To convert PO4 to P, divide by 3. To convert P to PO4, multiply by 3

Other Measurements

- pH Meter/ Strips
- Soil Moisture %
- Soil Temperature

Nutrients = 4 R's

- Right Source
- Right Place
- Right Time
- Right Rate

Other Sources of Information

- Met Eireann
- Soil & Silage Reports
- Teagasc Website ASSAP

	0					Cru
		9.5m	ig/L	1 State		Asł
						Table 2:
		Morgans: 10mg/L		P_Morg		1st win
		/		7.6mg	g/L	2nd win
the		P_Morgan 1.4mg/L	P_M	P_Morg 7.6m organs: smg/L		
Lea	end		_Morgans:		P_Morga 3.9mg/	ns: L
Leg	enu		2mg/L			
P_In	dex 1 (0-3mg/L)			P_Mor 4.1m	gans: ng/L	
	2 (3.1-5mg/L)					
	3 (5.1-8mg/L)	SP -	P_Morgans 3.5mg/L	s:	2	
2	, , , , , , , , , , , , , , , , , , , ,	and the second s	o.omg/L			Constraint of the

Unit of measu	re	Mean	ing			Low	High	Target
Dry matter (%)	y matter (%)		Feedstuff less water content				40-55	28-32
pH		Measu	ure of acidity			3.4-3.7	4.5-5.5	3.8-4.5
Ammonia – N (%N)	Indica	tor of grass N con	tent at cutting		4-7	15-25	<10
NDF (% DM)		Measu	ire of forage fibre a	and intake potentia	al	42-47	55-65	<44
DMD (%)		Measu	ire of quality			55-65	76-80	>72
ME (MJ/kg DM	0	Energ	y content (linked t	to DMD value)		8-9	11-12	>11
UFV/UFL (unit	/kg DM)	Energ	y content (linked i	to DMD value)		0.6-0.7	0.89-0.96	>0.89
Crude protein (% DM)	Measu	Measures N as indicator of true protein content				15+	>13.5
Ash (% DM)		Indica	Indicator of soil contamination				12-15	<8.6
ble 2: Daily winte	r weight	gain ta	rgets for spring	-born calf-to-be	ef anin	nals at var	ious stages	
	2: mor stee	nth	23-24 month steers	28-30 month steers	m	19 onth ifers	U16 month bulls	20 month bulls
st winter (kg/day) 0.	6	0.6	0.6	(0.5	0.85	0.70
nd winter (kg/da	y) -		1.0-1.05	0.5		4	-	1941
9	• M éire	E T eanr	- DONEGAL	🧀 🚳 6°C	4	ADVISORY	🔔 weat	THER

AGRI-METEOROLOGICAL DATA

Click here for Latest Farming Commentary

Soil Moisture Deficits, Evaporation, Potential Evapotranspiration, Actual Evapotranspiration and Runoff:

- Soil Moisture Deficit (SMD) is the amount of rain needed to bring the soil moisture content back to field capacity.
- Field capacity (SMD=0) is the amount of water the soil can hold against gravity i.e. the maximum water a pot plant can be watered and not leak water. Negative SMD indicates a water surplus, which will be drained over time through either infiltration or overland flow or both.
- Saturation is reached when SMD= -10mm, i.e a water surplus of 10mm. Positive SMD is below field capacity and rain can infiltrate to the capacity of the SMD amount. In a saturated soil all of the available soil pores are full of water, but water will drain out of large pores under the force of gravity.