Agebra Simple Equation 3(2x - 1) = 4x 6x - 3 = 4x	Calculate the value of $p^2 - 3rq$ For $p = 3$, $q = -4$ and $r = 7$ Sub in values for p, q and r $(3)^2 - 3(7)(-4)$ = 93	(the opposite of Factorising) $(3x + 2)(4x - 3)$ $= 3x(4x - 3) + 2(4x - 3)$ $= 12x^{2} - 9x + 8x - 6$ $= 12x^{2} - x - 6$		Highest Common Factor $6x^2 - 15xy$ 3x(2x - 5y) Difference of Squares
$6x - 4x = 3$ $2x = 3$ $x = \frac{3}{2}$ Multiply to get rid of brackets, <i>x</i> 's to one side, numbers to the other Inequalities $5x + 1 \le 4x + 3 , x \in N$ $5x - 4x \le 3 - 1$ $x \le 2$ Treat this like an equation with <i>x</i> 's to one side and numbers to the other. $x \in N, x \in Z \text{ means dots.}$ $x \in R \text{ means shading}$ Compound Inequalities	M ^A THS POINTS	Manipulate This is taking subject (the of maths. (M $M = \frac{1}{S+P}$ Rearrange to subject. M(S+P) = MS + MP = MP = 1 - M $P = \frac{1 - MS}{M}$	Formulae (Rearranging) and a formula and changing its eletter by itself) through rules Multiplication, factorising etc) the formula to make P its 1 1	$4x^{2} - 81$ (2x + 9)(2x - 9) Quadratics $6x^{2} - 5x - 14$ (3x - 7)(2x + 3) Grouping $9a^{2} - 6ab + 12ac - 8bc$ 3a(3a - 2b) + 4c(3a - 2b) (3a + 4c)(3a - 2b) Combinations
$-2 \le 5x + 3 < 18$, $x \in R$ Split into two inequalities and solve as before.	Forming a Quadratic EquationS $x^2 - (sum of the roots)x + (product of the roots) = 0$ f		Solving Quadratics $f(x) = 2x^2 - 4x - 6 = 0$	$x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(2)(-6)}}{2(2)}$ $x = \frac{4 \pm \sqrt{16 + 48}}{4}$ $x = \frac{4 \pm \sqrt{64}}{4}$ $x = \frac{4 \pm 8}{4}$ $x = \frac{4 \pm 8}{4}$ $x = \frac{4 \pm 8}{4} & \frac{4 - 8}{4}$
$-2 \le 5x + 3 \qquad 5x + 3 < 18 \\ -2 - 3 \le 5x \qquad 5x < 18 - 3 \\ -5 \le 5x \qquad 5x < 15 \\ -1 \le x \qquad x < 3$	Form the equation with roots $x = 4$ and $x = 7$ $x^{2} - (4 + 7)x + (4)(7) = 0$ $x^{2} - 11x + 28 = 0$ Note - ' roots ' are values for <i>x</i> that satisfy the equation.		factorise $(2x - 6)(x + 1) = 0$ or $-b$ formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	

-2 -1 0 1 2 3 4

4 -1

&

x = 3

Properties of indices
$$L = a^{a_1, a_1} = a^{a_1+a_1}$$

 $L = a^{a_1, a_1} = a^{a_1+a_1}$
 $2 = \frac{a^a_1}{a^a} = a^{a_1+a_1}$
 $3 = (a^a)^a = a^{a_1+a_1}$
 $4 = (a^b)^a = a^{a_1+a_1}$
 $4 = (a^b)^a = a^{a_1+a_1}$
 $4 = (a^b)^a = a^{a_1+a_1}$
 $5 = a^{a_1} = \frac{a^a_1}{a^a_1}$
 $5 = a^{a_1} = \frac{a^a_1}{a^a_1} = \frac{a^a_1$

Express as a Single Fraction

Simultaneous Equations – 2 unknowns (linear)

Laws of Indices

Properties of Surds