

Chapter 5

Arithmetic AND terminology used in paper

(Usually Q1 Paper 1)

This revision guide covers

 \circ Rounding (to one decimal place, to two decimal..etc) Numbers in the standard form (write as $a \times 10^n$ where $1 \le a < 10$) • **BIMDAS** $(mm \rightarrow cm \rightarrow m \rightarrow km)$ Converting between units Speed-Distance-Time • The different types of numbers (N,Z,R,Q,R/Q) $(\sqrt{ab} = \sqrt{a}\sqrt{b})$ • Surds Equations with Surds (Sample Q c parts) \circ Indices • Equations with Indices (Sample Q c parts)

Date	How many pages I got done	

After completing booklet; practice answering exam paper questions – Questions 1

Highlight the topics you need to go over before the L.C exam.

Converting between units.

The different types of numbers:

• **N=Natural Numbers:** Is the positive whole numbers.

 $\mathbb{N} = \{1, 2, 3, 4, 5, \dots\}$ Note: Zero is <u>NOT</u> a natural number.

Highlight the Natural numbers on the number line:

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

- **A Prime number:** Is a natural number that has only two factors.
- A composite number: Is a whole number that is not a prime number.
- **Z** = Integers: Is the negative whole numbers or positive whole numbers $\mathbb{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$ Note: Zero is an integer.

Highlight the Natural numbers on the number line:

• **R/Q: Irrational number:** Is a number that cannot be written as a fraction/ ratio.

	Number	Decimals	Rational/ Irrational
(1)	$\sqrt{4}$		
(2)	$\sqrt{9/100}$		
(3)	$\sqrt{4/9}$		
(4)	$\sqrt{\frac{25}{36}}$ $\sqrt{2}$		
(5)	$\sqrt{2}$		
(6)	$\sqrt{8}$		
(7)	³ √5		
(8)	π		
(9)	$1 - \sqrt{2}$		

Portumna CS Ordinary Maths Notes Miss McDonnell

(a) In the spaces provided, write down:

Student Activity

Classify all the following numbers as **natural**, **integer**, **rational**, **irrational or real** using the table below. List all that apply.

	Natural N	Integer Z	Rational Q	Irrational ℝ\ℚ	Real ℝ
5					
$1 + \sqrt{2}$					
-9.6403915					
$-\frac{1}{2}$					
6.36					
2π					
-3					
3√8					
0					
- √3					

Question:

The diagram represents the sets: Natural Numbers \mathbb{N} , Integers \mathbb{Z} , Rational Numbers \mathbb{Q} and Real Numbers \mathbb{R} .

Insert each of the following numbers in the correct place on the diagram:

5, 1+ $\sqrt{2}$, -9.6403915...., -1/2, 6.3 6, 2π , -3, $\sqrt[3]{8}$, 0 and - $\sqrt{3}$.

Note: Be able to write numbers into the following categories;

Surds:

Question 1 HELP:

SIMPLIFY A SURD:		
a) $\sqrt{12}$		
A surd can be written as the f	actor of the inside r	number.
Factors of 12 = 6, 2 or 4,3		
So $\sqrt{12} = \sqrt{6}\sqrt{2}$	or	$\sqrt{12} = \sqrt{4}\sqrt{3}$
$\sqrt{12} = \sqrt{3}\sqrt{2}\sqrt{2}$		$\sqrt{12} = \sqrt{2}\sqrt{2}\sqrt{3}$
$\sqrt{12}$ = $\sqrt{3}(2)$		$\sqrt{12}$ = (2) $\sqrt{3}$

Simplify the following:

a.	$\sqrt{12}$	b. $\sqrt{20}$	c. $\sqrt{18}$	d.	$\sqrt{27}$
e.	$\sqrt{8}$	f. $\sqrt{24}$	g. $\sqrt{28}$	h.	$\sqrt{32}$

Question 2 HELP:

ADD OR SUBTRACT A SURD

A) $4\sqrt{2} + 3\sqrt{2}$

Surds can be added or subtracted once they have the SAME SURD attached to them both.

Since $\sqrt{2}$ is common here...we can add.

Answer = $7\sqrt{2}$

Question 2: Add the Surd

$$_{\rm c)} 6\sqrt{3} + 2\sqrt{3} =$$

Subtract the Surd:

a)
$$5\sqrt{2} - 3\sqrt{2} = \sqrt{2}$$

b)
$$\sqrt{5} - \sqrt{5} =$$

Question 3 HELP:

a) SIMPLIFY $\sqrt{8} + \sqrt{2}$

Step 1: We need to change $\sqrt{8}$ into its multiples.

Factors of 8 are 4, 2

Step 2: Sub in the re-arranged surd

 $\sqrt{4}\sqrt{2} + \sqrt{2}$

Step 3: Note that $\sqrt{4}$ on the calculator = 2

 $2\sqrt{2} + \sqrt{2}$

Step 4: Since they have the same number inside the surd, you can now add them.

Answer: 3 $\sqrt{2}$

Question 3: Simplify the following

a) $\sqrt{18} - \sqrt{2}$

Step 1: Rearrange $\sqrt{18}$ into its factors_____

Step 2: Sub into rearranged surd into equation

Step 3: Use calculator to get what $\sqrt{9}$ is and input: _____

Step 4: Subtract as same surds: _____

b)
$$\sqrt{125} - 5\sqrt{5}$$

 Step 1: Rearrange $\sqrt{125}$ into its factors

 Step 2: Sub into rearranged surd into equation

 Step 3: Use calculator to get what $\sqrt{25}$ is and input:

 Step 4: Subtract as same surds:

 $_{c}$
 $\sqrt{48} - \sqrt{12}$

 Step 1: Rearrange $\sqrt{48}$ into its factors

 Step 2: Rearrange $\sqrt{12}$ into its factors

 Step 3: Sub into rearranged surd into equation

 Step 3: Sub into rearranged surd into equation

 Step 4: Subtract as same surds:

Try this one on your own:

 $\sqrt{45} - \sqrt{20}$

Question 4 HELP: MULTIPLICATION WITH SURDS

S	tep 2: Multiply the numbers in the surds and keep the surd	2x3 = 6 $3x5 = \sqrt{15}$ $6\sqrt{15}$
Qı	estion 4: Simplify the following	
a)	$4\sqrt{6} \ x \ 2\sqrt{5}$ Step 1: Multiply the numbers Step 2: Multiply the numbers in the surds and keep the surd Step 3: Put the values together	
b)	$\sqrt{10} \times \sqrt{2}$ Step 1: Multiply the numbers in the surd and keep Step 2: Simplify further by getting the factors of 2 Step 3: Use calculator to get $\sqrt{4}$ and sub in:	
c)	$\sqrt{5} \times \sqrt{10}$	
	Step 1: Multiply the numbers in the surd and keep Step 2: Simplify further by getting the factors of 5 Step 3: Use calculator to get $\sqrt{25}$ and sub in:	
d)	$5\sqrt{5} \times 7\sqrt{3}$ Step 1: Multiply the numbers Step 2: Multiply the numbers in the surds and keep the su Step 3: Put the values together	urd
	Question to challenge you:	

Question to challenge you:

Show that $\sqrt{8} + \sqrt{18} = \sqrt{50}$

Hint: Get these surds have a common factor

Question 5 HELP: MULTIPLICATION WITH SURDS

Multiply out the brackets: $\begin{aligned}
\left(2+\sqrt{2}\right)\left(3+\sqrt{2}\right)
\end{aligned}$ Step 1: Rewrite to set yourself up for multiplying out the brackets: $2\left(3+\sqrt{2}\right) + \sqrt{2}\left(3+\sqrt{2}\right)
\end{aligned}$ Step 2: Multiply out the brackets. $6+2\sqrt{2}+3\sqrt{2}+\sqrt{2}\sqrt{2}$ Step 3: Note that $\sqrt{2}\sqrt{2}$ gives you a 2. Sub this in $6+2\sqrt{2}+3\sqrt{2}+2$ Step 4: Rearrange so that alike terms together. $6+2+2\sqrt{2}+3\sqrt{2}$ Step 5: Add the like terms

Question 5: Multiply out the brackets. a) $(4 + \sqrt{3})(5 + \sqrt{3})$

Step 1: Rewrite to set yourself up for multiplying out the brackets:

 Step 2: Multiply out the brackets.

 Step 3: Note that $\sqrt{3}\sqrt{3}$ gives you a 3. Sub this in ______

 Step 4: Rearrange so that alike terms together.

 Step 5: Add the like terms

b) $(5 - \sqrt{3}) (5 + \sqrt{3})$

Step 1: Rewrite to set yourself up for multiplying out the brackets:

Step 2: Multiply out the brackets. Careful with the minus!

Step 3: Note that $\sqrt{3}\sqrt{3}$ gives you a 3. Sub this in ______ **Step 4:** Rearrange so that alike terms together. _____

Step 5: Add the like terms

c) $(2 - 2\sqrt{5})^2$

Step 1: Note anything to the power of 2; means multiplied by itself. Rewrite without the power:

Step 2: Rewrite to set yourself up for multiplying out the brackets:

Step 3: Multiply out the brackets. Careful with the minus!

Step 4: Note that $\sqrt{5}\sqrt{5}$ gives you a 5. Sub this in ______ **Step 5:** Rearrange so that alike terms together. ______ **Step 6:** Add the like terms

Challenge Question:

 $(rac{1}{\sqrt{2}}+\sqrt{2})(rac{1}{\sqrt{2}}-\sqrt{2})$

Equations with Surds:

Solve the equation: $\sqrt{4x-3} = 3$		
Step 1: To get rid of the surd; square both sides.		
$(\sqrt{4x-3})^2 = 3^2$		
Step 2: When you square a surd, you get what is inside the squa	are: 4x – 3 = 9	
Step 3: Rearrange equation, so that you have x on one side.	4x = 9 + 3	
	4x = 12 so	x=3
a) Solve the equation: $\sqrt{4x+5}$ = 5		
Step 1: To get rid of the surd; square both sides.		
Step 2: When you square a surd, you get what is inside the squ	are:	
Step 3: Rearrange equation, so that you have x on one side.		
		X=
b) Solve the equation: $-3 + \sqrt{2x - 5} = 0$		
Step 1: Rearrange do that the surd is on its own on one side.		
Step 2: To get rid of the surd; square both sides.		
Step 3: When you square a surd, you get what is inside the squ	are:	
Step 4: Rearrange equation, so that you have x on one side.		
		X=
c) Solve the equation: $x = \sqrt{4x - 3}$		
Step 1: To get rid of the surd; square both sides.		
Step 2: When you square a surd, you get what is inside the squ	are:	
Step 3: Rearrange equation so that you have it in the form ax ²	+ bx + c.	
X=	x=	

CHALLENGE QUESTION:

$$2\sqrt{x-6} = \sqrt{8+x}$$

Indices: Multipication

```
Examples:
  1. Solve 2^9 x 2^8 Answer: When multiplying numbers with the same power, ADD the
    indices:
    Answer: 2<sup>9+8</sup>
                = 2^{17}
   a^5 \times a^2 Step 1: Add the indices _____
 a)
 b) 2x^2 \times 3x^4
   Step 1: multiply the numbers
   Step 2: Add the indices
                           Answer:
    \frac{1}{2}x^2 \times 8x^2
 c)
   Step 1: multiply the numbers
   Step 2: Add the indices
                           Answer:_____
   x^{-2} \times 3x \times 2x
 d)
   Step 1: multiply the numbers
   Step 2: Add the indices
                           Answer: _____
    (4p^3r^6) \times (3pr^2)
 e)
   Step 1: multiply the numbers
   Step 2: Add the indices
                           Answer:_____
   (5c^6d^4) \times (4c^9d)
 f)
                       Answer:
```


g)
$$(3x^2y^4) \times (2x^7y^5)$$
 Answe

nswer: _____

Indices: Division

Step 2: Subtract the indices when dividing:

_____Answer:_____

Challenge Question:

Show that
$$\frac{a^4(a^2+a^3)}{a^6}$$
 can be simplified to (1+a)

Negative Indices:

Example: Wr	ite these as whole number	a) 16 ⁻⁴			
Answer: Questi	Answer: Question wants you to get rid of the negative power.				
Step 1: Get rid	of negative power 16^{-4}	can be written as $\frac{1}{16^4}$			
Step 2: Use c	alculator to simplify $\frac{1}{16^4}$	$= = \frac{1}{65536} = 0.00001525878$			
Step 3: Can r	ewrite in form <i>a x</i> 10 ^{<i>n</i>}	1.52 x 10 ⁻⁵			
a) 5^{-2}	Step 1: Get rid of negative power Step 2: Use calculator to simplify Step 1: Get rid of negative pow Step 2: Use calculator to simplify				
c) 15 ⁻⁵	Step 1: Get rid of negative power Step 2: Use calculator to simplify Step 3: Can rewrite in form $a \times 1$				
Example: Write these as whole number a) $\frac{1}{4^{-4}}$					
Step 1: Get rid of	Step 1: Get rid of negative power $\frac{1}{4^{-4}}$ can be written as 4^4				
Step 2: Use calcu	tep 2: Use calculator to simplify = 256				

d) $\frac{1}{6^{-3}}$ Step 1: Get rid of negative power

Step 2: Use calculator to simplify

e)
$$\frac{2}{3^{-2}}$$

Step 1: Get rid of negative power

Step 2: Use calculator to simplify

Fractional Indices:

Write the following indices as surds:	a)	$3^{\frac{1}{2}}$	b)	$3^{\frac{1}{3}}$	c)	$6^{\frac{1}{4}}$	d)	$3^{\frac{2}{3}}$	
a) $3^{\frac{1}{2}} = \sqrt{3}$									
b) $3^{\frac{1}{3}} = \sqrt[3]{3}$									
c) $6^{\frac{1}{4}} = \sqrt[4]{6}$									
d) $3^{\frac{2}{3}} = \sqrt[3]{3^2} = \sqrt[3]{9}$									

Write these indices as surds:

a) $64^{\frac{1}{3}}$ b) $32^{\frac{3}{5}}$ c) $6^{\frac{1}{2}}$

Challenge Question:

Show that $\frac{(a\sqrt{a})^3}{a^4}$ simplifies to \sqrt{a} . **1.** Write 6^{-2} and $81^{\frac{1}{2}}$ without using indices. **2.**

Equations with Indices:

Find the value of x: $4^x = 16$ Step 1: Write all numbers as indices with same base. $4^x = 4^2$ Step 2: Since the base numbers are the same, they can be ignored.X=2

a) Find the value of x: $16^x = 64$

Step 1: Write all numbers as indices with same base.

Step 2: Since the base numbers are the same, they can be ignored.

b) Find the value of x: $4^{x+1} = 32$

1: Write all numbers as indices with same base. _____

Step 2: Since the base numbers are the same, they can be ignored.

c) Find the value of x: $4^{x-1} = 2^{x+1}$

Step 1: Write all numbers as indices with same base.

Step 2: Since the base numbers are the same, they can be ignored.

Solve the equation $49^x = 7^{2+x}$ and verify your answer.

 Step 1: Write all numbers as indices with same base.

 Step 2: Since the base numbers are the same, they can be ignored.

Step 3: Sub value of x back into question given to verify: ______

Challenge Question:

Find the value of x:
$$3^x = \frac{1}{27}$$