Chapter 5

Arithmetic AND terminology used in paper

(Usually Q1 Paper 1)
This revision guide covers

- Rounding (to one decimal place, to two decimal..etc)
- Numbers in the standard form
(write as $a \boldsymbol{x} \mathbf{1 0}^{\boldsymbol{n}}$ where $\mathbf{1 \leq a < 1 0)}$
- BIMDAS
- Converting between units
$(\mathrm{mm} \rightarrow \mathrm{cm} \rightarrow \mathrm{m} \rightarrow \mathrm{km})$
- Speed-Distance-Time
- The different types of numbers
(N,Z,R,Q,R/Q)
- Surds
$(\sqrt{a b}=\sqrt{a} \sqrt{b})$
- Equations with Surds
(Sample Q c parts)
- Indices
- Equations with Indices
(Sample Q c parts)

Date	How many pages I got done	

After completing booklet; practice answering exam paper questions - Questions 1

Highlight the topics you need to go over before the L.C exam.

BIMDAS:

Order of calculations:

$\mathbf{1}^{\text {st: }}$: Solve any brackets
$\mathbf{2}^{\text {nd }}$: Solve any power/indices
$3^{\text {rd }}$: Solve any Multipication/Division
$4^{\text {th }}$: Solve the addition or subtraction

Converting between units.

5 km	$=? \mathrm{~m}$	Need to $\times 1000$	$5 \times 1000=5000 \mathrm{~m}$
120 cm	$=? \mathrm{~m}$	Need to $\div 100$	$120 \div 100=1.2 \mathrm{~m}$

The different types of numbers:

- $\mathbf{N}=$ Natural Numbers: Is the positive whole numbers.
$\mathbb{N}=\{1,2,3,4,5, \ldots \ldots\}$ Note: Zero is NOT a natural number.

Highlight the Natural numbers on the number line:

-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7	8	9	10

Natural

- A Prime number: Is a natural number that has only two factors.
- A composite number: Is a whole number that is not a prime number.
$\mathbf{Z}=$ Integers: Is the negative whole numbers or positive whole numbers $\mathbb{Z}=\{\ldots . .-3,-2,-1,0,1,2,3, \ldots .$.$\} Note: Zero is an integer.$

Highlight the Natural numbers on the number line:

-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7	8	9	10

Integers

- $\mathbf{Q}=$ Rational number: is a number that can be writter as a fraction. .e. in the
form $\frac{p}{q}$, where
$p, q \in \mathbb{Z}$
\&
$q \neq 0$.

Rational

Q

- R/Q: Irrational number: Is a number that cannot be written as a fraction/ ratio.

	Number	Decimals	Rational/ Irrational
(1)	$\sqrt{4}$		
(2)	$\sqrt{9 / 100}$		
(3)	$\sqrt{4 / 9}$		
(4)	$\sqrt{25 / 36}$		
(5)	$\sqrt{2}$		
(6)	$\sqrt{8}$		
(7)	$\sqrt[3]{5}$		
(8)	π		
(9)	$1-\sqrt{2}$		

(a) In the spaces provided, write down:
(i) 2 natural numbers

(ii) 2 negative integers \square
and

(iii) 2 prime numbers

and

Student Activity

Classify all the following numbers as natural, integer, rational, irrational or real using the table below. List all that apply.

	Natural \mathbb{N}	Integer \mathbb{Z}	Rational \mathbb{Q}	Irrational $\mathbb{R} \backslash \mathbb{Q}$	Real \mathbb{R}
5					
$1+\sqrt{2}$					
$-9.6403915 \ldots$					
$-\frac{1}{2}$					
$6 . \dot{3} \dot{6}$					
2π					
-3					
$\sqrt[3]{8}$					
0					
$-\sqrt{3}$					

Question:

The diagram represents the sets: Natural Numbers \mathbb{N}, Integers \mathbb{Z}, Rational Numbers \mathbb{Q} and Real Numbers \mathbb{R}.

Insert each of the following numbers in the correct place on the diagram:
$5,1+\sqrt{ } 2,-9.6403915 \ldots .,-1 / 2,6.36,2 \pi,-3, \sqrt[3]{8}, 0$ and $-\sqrt{ } 3$.

Note: Be able to write numbers into the following categories;

Surds:

Question 1 HELP:

SIMPLIFY A SURD:
a) $\sqrt{12}$

A surd can be written as the factor of the inside number.
Factors of $12=6,2$ or 4,3

$$
\begin{array}{lrr}
\text { So } \sqrt{12}=\sqrt{6} \sqrt{2} & \text { or } & \sqrt{12}=\sqrt{4} \sqrt{3} \\
\sqrt{12}=\sqrt{3} \sqrt{2} \sqrt{2} & & \sqrt{12}=\sqrt{2} \sqrt{2} \sqrt{3} \\
\sqrt{12}=\sqrt{3}(2) & \sqrt{12}=\text { (2) } \sqrt{3}
\end{array}
$$

Simplify the following:

a. $\sqrt{12}$
b. $\sqrt{20}$
c. $\sqrt{18}$
d. $\sqrt{27}$
e. $\sqrt{8}$
f. $\sqrt{24}$
g. $\sqrt{28}$
h. $\sqrt{32}$

Question 2 HELP:

ADD OR SUBTRACT A SURD

A) $4 \sqrt{2}+3 \sqrt{2}$

Surds can be added or subtracted once they have the SAME SURD attached to them both.
Since $\sqrt{2}$ is common here...we can add.
Answer $=7 \sqrt{2}$

Question 2: Add the Surd
a)

$$
8 \sqrt{2}+2 \sqrt{2}=
$$

\qquad $\sqrt{2}$
b) $\sqrt{5}+\sqrt{5}=\ldots \sqrt{5}$
c) $6 \sqrt{3}+2 \sqrt{3}=$ \qquad

Subtract the Surd:

a) $5 \sqrt{2}-3 \sqrt{2}=$ \qquad $\sqrt{2}$
b) $\sqrt{5}-\sqrt{5}=$ \qquad

Question 3 HELP:

a) SIMPLIFY $\sqrt{8}+\sqrt{2}$

Step 1: We need to change $\sqrt{8}$ into its multiples.
Factors of 8 are 4, 2
Step 2: Sub in the re-arranged surd
$\sqrt{4} \sqrt{2}+\sqrt{2}$
Step 3: Note that $\sqrt{4}$ on the calculator $=2$
$2 \sqrt{2}+\sqrt{2}$
Step 4: Since they have the same number inside the surd, you can now add them.
Answer: $3 \sqrt{2}$

Question 3: Simplify the following

a) $\sqrt{18}-\sqrt{2}$

Step 1: Rearrange $\sqrt{18}$ into its factors \qquad
Step 2: Sub into rearranged surd into equation \qquad

Step 3: Use calculator to get what $\sqrt{9}$ is and input: \qquad
Step 4: Subtract as same surds: \qquad
b) $\sqrt{125}-5 \sqrt{5}$

Step 1: Rearrange $\sqrt{125}$ into its factors \qquad
Step 2: Sub into rearranged surd into equation \qquad
Step 3: Use calculator to get what $\sqrt{25}$ is and input:
Step 4: Subtract as same surds: \qquad
c) $\sqrt{48}-\sqrt{12}$

Step 1: Rearrange $\sqrt{48}$ into its factors \qquad
Step 2: Rearrange $\sqrt{12}$ into its factors \qquad
Step 3: Sub into rearranged surd into equation \qquad
Step 4: Subtract as same surds: \qquad
Try this one on your own:
d) $\sqrt{45}-\sqrt{20}$

Question 4 HELP: MULTIPLICATION WITH SURDS

A) $2 \sqrt{3} \times 3 \sqrt{5}$

Step 1: Multiply the numbers
Step 2: Multiply the numbers in the surds and keep the surd
Step 3: Put the values together
$2 \times 3=6$
$3 \times 5=\sqrt{15}$
$6 \sqrt{15}$

Question 4: Simplify the following

a) $4 \sqrt{6} \times 2 \sqrt{5}$

Step 1: Multiply the numbers
Step 2: Multiply the numbers in the surds and keep the surd
Step 3: Put the values together
b) $\sqrt{10} \times \sqrt{2}$

Step 1: Multiply the numbers in the surd and keep the surd: \qquad
Step 2: Simplify further by getting the factors of 20: 4,5 \qquad
Step 3: Use calculator to get $\sqrt{4}$ and sub in:
c) $\sqrt{5} \times \sqrt{10}$

Step 1: Multiply the numbers in the surd and keep the surd: \qquad
Step 2: Simplify further by getting the factors of 50: 25,5 \qquad
Step 3: Use calculator to get $\sqrt{25}$ and sub in:
d) $5 \sqrt{5} \times 7 \sqrt{3}$

Step 1: Multiply the numbers
Step 2: Multiply the numbers in the surds and keep the surd \qquad
Step 3: Put the values together \qquad

Question to challenge you:

Show that $\sqrt{8}+\sqrt{18}=\sqrt{50}$

Hint: Get these surds have a common factor

Question 5 HELP: MULTIPLICATION WITH SURDS

Multiply out the brackets:

$$
(2+\sqrt{2})(3+\sqrt{2})
$$

Step 1: Rewrite to set yourself up for multiplying out the brackets:

$$
2(3+\sqrt{2})+\sqrt{2}(3+\sqrt{2})
$$

Step 2: Multiply out the brackets.

$$
6+2 \sqrt{2}+3 \sqrt{2}+\sqrt{2} \sqrt{2}
$$

Step 3: Note that $\sqrt{2} \sqrt{2}$ gives you a 2 . Sub this in

$$
6+2 \sqrt{2}+3 \sqrt{2}+2
$$

Step 4: Rearrange so that alike terms together.

$$
6+2+2 \sqrt{2}+3 \sqrt{2}
$$

Step 5: Add the like terms

$$
8+5 \sqrt{2}
$$

Question 5: Multiply out the brackets.
a) $(4+\sqrt{3})(5+\sqrt{3})$

Step 1: Rewrite to set yourself up for multiplying out the brackets:

Step 2: Multiply out the brackets. \qquad
Step 3: Note that $\sqrt{3} \sqrt{3}$ gives you a 3 . Sub this in \qquad
Step 4: Rearrange so that alike terms together. \qquad

Step 5: Add the like terms

b) $(5-\sqrt{3})(5+\sqrt{3})$

Step 1: Rewrite to set yourself up for multiplying out the brackets:
\qquad
Step 2: Multiply out the brackets. Careful with the minus!

Step 3: Note that $\sqrt{3} \sqrt{3}$ gives you a 3. Sub this in \qquad
Step 4: Rearrange so that alike terms together. \qquad
Step 5: Add the like terms

c) $(2-2 \sqrt{5})^{2}$

Step 1: Note anything to the power of 2; means multiplied by itself. Rewrite without the power:

Step 2: Rewrite to set yourself up for multiplying out the brackets:

Step 3: Multiply out the brackets. Careful with the minus!

Step 4: Note that $\sqrt{5} \sqrt{5}$ gives you a 5 . Sub this in \qquad
Step 5: Rearrange so that alike terms together. \qquad
Step 6: Add the like terms

Challenge Question:

$$
\left(\frac{1}{\sqrt{2}}+\sqrt{2}\right)\left(\frac{1}{\sqrt{2}}-\sqrt{2}\right)
$$

Equations with Surds:

Solve the equation: $\sqrt{4 x-3}=3$
Step 1: To get rid of the surd; square both sides.

$$
(\sqrt{4 x-3})^{2}=3^{2}
$$

Step 2: When you square a surd, you get what is inside the square: $4 x-3=9$
Step 3: Rearrange equation, so that you have x on one side. $4 x=9+3$

$$
4 x=12 \text { so } \quad x=3
$$

a) Solve the equation: $\sqrt{4 x+5}=5$

Step 1: To get rid of the surd; square both sides.
Step 2: When you square a surd, you get what is inside the square: \qquad
Step 3: Rearrange equation, so that you have x on one side. \qquad
$X=$ \qquad
b) Solve the equation: $-3+\sqrt{2 x-5}=0$

Step 1: Rearrange do that the surd is on its own on one side. \qquad

Step 2: To get rid of the surd; square both sides.
Step 3: When you square a surd, you get what is inside the square: \qquad
Step 4: Rearrange equation, so that you have x on one side. \qquad
$X=$ \qquad
c) Solve the equation: $x=\sqrt{4 x-3}$

Step 1: To get rid of the surd; square both sides.
Step 2: When you square a surd, you get what is inside the square: \qquad
Step 3: Rearrange equation so that you have it in the form $a x^{2}+b x+c$.
$X=$ \qquad $\mathrm{x}=$ \qquad

CHALLENGE QUESTION:

$$
2 \sqrt{x-6}=\sqrt{8+x}
$$

Indices: Multipication

Examples:

1. Solve $\mathbf{2}^{9} \boldsymbol{x} \mathbf{2}^{8}$ Answer: When multiplying numbers with the same power, ADD the indices:
Answer: $\mathbf{2}^{9+8}=\mathbf{2}^{17}$
a) $a^{5} \times a^{2} \quad$ Step 1: Add the indices \qquad
b) $2 x^{2} \times 3 x^{4}$

Step 1: multiply the numbers \qquad
Step 2: Add the indices
Answer: \qquad
c)
$\frac{1}{2} x^{2} \times 8 x^{2}$
Step 1: multiply the numbers \qquad
Step 2: Add the indices
Answer: \qquad
d) $x^{-2} \times 3 x \times 2 x$

Step 1: multiply the numbers \qquad
Step 2: Add the indices

> Answer:
\qquad
e) $\left(4 p^{3} r^{6}\right) \times\left(3 p r^{2}\right)$

Step 1: multiply the numbers \qquad
Step 2: Add the indices
Answer: \qquad
f) $\left(5 c^{6} d^{4}\right) \times\left(4 c^{9} d\right)$ Answer: \qquad
g) $\left(3 x^{2} y^{4}\right) \times\left(2 x^{7} y^{5}\right)$

Answer: \qquad

Indices: Division

Examples:

$$
\text { Solve the following } \frac{a^{6} x a^{4}}{a^{2}}
$$

Step 1: Add the indices in numerator position

$$
\frac{a^{10}}{a^{2}}
$$

Step 2: Subtract the indices when dividing:
Answer $=a^{10-2}=a^{8}$
a)
a) $\frac{a^{6} \times a^{8}}{a^{7}}$

Step 1: Add the indices in numerator position \qquad
Step 2: Subtract the indices when dividing: \qquad Answer: \qquad
b)

$$
\frac{(y+5)^{6}}{(y+5)^{2}}
$$

Step 1: Add the indices in numerator position \qquad
Step 2: Subtract the indices when dividing: \qquad Answer: \qquad
c) $\frac{4 X^{2} \times 2}{2 X^{3}}$

Step 1: Add the indices in numerator position \qquad
Step 2: Subtract the indices when dividing:
\qquad Answer: \qquad

Challenge Question:

Show that $\frac{a^{4}\left(a^{2}+a^{3}\right)}{a^{6}}$ can be simplified to (1+a)

Negative Indices:

Example: Write these as whole number
a) 16^{-4}

Answer: Question wants you to get rid of the negative power.
Step 1: Get rid of negative power $\mathbf{1 6}^{\mathbf{- 4}} \quad$ can be written as $\frac{1}{16^{4}}$
Step 2: Use calculator to simplify $\quad \frac{1}{16^{4}}==\frac{1}{65536}=0.00001525878$
Step 3: Can rewrite in form $\boldsymbol{a} \boldsymbol{x} \mathbf{1 0}^{\boldsymbol{n}} \quad \mathbf{1 . 5 2 \times \mathbf { 1 0 } ^ { - \mathbf { 5 } }}$
a) 5^{-2}

Step 1: Get rid of negative power \qquad
Step 2: Use calculator to simplify
) $8^{-\frac{1}{3}}$
Step 1: Get rid of negative power \qquad
Step 2: Use calculator to simplify
c) 15^{-5}

Step 1: Get rid of negative power \qquad
Step 2: Use calculator to simplify
Step 3: Can rewrite in form $\boldsymbol{a} \boldsymbol{x} \mathbf{1 0}^{\boldsymbol{n}}$
Example: Write these as whole number
a) $\frac{1}{4^{-4}}$

Step 1: Get rid of negative power $\quad \frac{1}{4^{-4}}$ can be written as 4^{4}
Step 2: Use calculator to simplify $=256$
d) $\frac{1}{6^{-3}}$

Step 1: Get rid of negative power
Step 2: Use calculator to simplify
e) $\frac{2}{3^{-2}}$

Step 1: Get rid of negative power

Step 2: Use calculator to simplify

Fractional Indices:

> Write the following indices as surds: a) $3^{\frac{1}{2}}$ $\begin{array}{lll}\text { a) } 3^{\frac{1}{2}}=\sqrt{3} \\ \text { b) } 3^{\frac{1}{3}} & \text { c) } 6^{\frac{1}{4}} & \text { d) } 3^{\frac{2}{3}} \\ \text { c) } 6^{\frac{1}{4}}=\sqrt[4]{3} \\ \text { d) } 3^{\frac{2}{3}}=\sqrt[3]{3^{2}}=\sqrt[3]{9}\end{array}$

Write these indices as surds:
a) $64^{\frac{1}{3}}$
b) $32^{\frac{3}{5}}$
c) $6^{\frac{1}{2}}$

Challenge Question:

1.

Show that $\frac{(a \sqrt{a})^{3}}{a^{4}}$ simplifies to \sqrt{a}.
Write 6^{-2} and $81^{\frac{1}{2}}$ without using indices.
2.

Equations with Indices:

```
Find the value of }\textrm{x}:\quad\mp@subsup{4}{}{x}=1
Step 1: Write all numbers as indices with same base. }\quad\mp@subsup{4}{}{x}=\mp@subsup{4}{}{2
Step 2: Since the base numbers are the same, they can be ignored. \(\quad \mathbf{X}=\mathbf{2}\)
```

a) Find the value of $x: \quad 16^{x}=64$

Step 1: Write all numbers as indices with same base. \qquad
Step 2: Since the base numbers are the same, they can be ignored. \qquad
b) Find the value of x : $\quad 4^{x+1}=32$

1: Write all numbers as indices with same base. \qquad

Step 2: Since the base numbers are the same, they can be ignored. \qquad
c) Find the value of $\mathrm{x}: \quad 4^{x-1}=2^{x+1}$

Step 1: Write all numbers as indices with same base. \qquad
Step 2: Since the base numbers are the same, they can be ignored.
d) Solve the equation $49^{x}=7^{2+x}$ and verify your answer.

Step 1: Write all numbers as indices with same base.
Step 2: Since the base numbers are the same, they can be ignored. \qquad
Step 3: Sub value of x back into question given to verify: \qquad

Challenge Question:

Find the value of $x: \quad 3^{x}=\frac{1}{27}$

