Experiment:

Build & test a water turbine to determine what factors impact on the turbines rotations per minute.

			Tick One
Size of wheel	Small	Large	
Position	Vertical blades	Horizontal blades	
Number of fins	5	10	
Material used for fins	Spoons	Plastic Blades	
raw a labelled diagra	m showing the two m	odels your group are goi	ng to build.
<u>Mode</u>	el One:	Mod	el Two:

Tip: Colour one fin so that the counting of rotations is easier

Control Variables

Now that you have build your model, you must ensure that the flow rate of water is the **same** when testing both models. This can be done by ensuring that the water is not turned off/ adjusted between testing each model.

Alternatively, you can calculate the flow rate for each testing and ensure the flow rates are the same.

Calculate the flow rate of water:

- 1. Turn on the water. (Tip: Slower flow rate will make it easier for counting the rotations)
- 2. Time how long it takes to fill a litre bottle.
- 3. Convert time to seconds. (Note: 1 minute = 60 seconds)
- 4. Calculate flow rate in Litres per second. (Note: 1 ÷ time taken to fill litre bottle in seconds)
- 5. Repeat procedure 3 times.
- 6. Calculate an average value for the flow rate.
- 7. Ensure the flow rate is kept constant.

Time Taken to Fill Litre Bottle Seconds (s)	Flow Rate (One Litre ÷ time in seconds) Litres per second (L / s)

Average flow rate:		
(Flow Rate 1) + (Flow Rate 2) + (Flow Rate 3)	Average flow rate =	L/s
3	Average now rate	

Checklist:

	Tick if this has been done.
Flow rate is the same for each test.	
The height from water source to water turbine is the same.	
The turbine rotates in the same direction for each test.	
The water hits the turbine at the same position in each test.	

Printable recording tables for collecting data.

Size of Turbine Wheel	Number of Rotations per Minute RPM
Small	
Large	

Position	Number of Rotations per Minute RPM
Vertical	
Horizontal	

Number of Fins	Number of Rotations per Minute RPM
5	
10	

Material Used for Fins	Number of Rotations per Minute RPM
Spoons	
Plastic Blades	

(**Note:** Students should repeat measurements three times and calculate an average for 'Number of Rotations per Minute')

Conclusions

S	ze of turbine wheel:
TI	e turbine rotated the fastest at rotations per minute
TI	e difference between the small and large turbine wasRPM.
P	sition of turbine wheel:
TI	e turbine rotated the fastest at rotations per minute
	e difference between the vertical and horizontal turbine wasRPM.
N	imber of fins on the turbine wheel:
TI	e turbine rotated the fastest at rotations per minute
TI	e difference between the 5 blades and 10 blades turbine wasRPM.
M	aterials used to make the fins/blades:
TI	e turbine rotated the fastest at rotations per minute
TI	e difference between the 5 blades and 10 blades turbine wasRPM.
	oking at these conclusions - If you were an engineer, what
d	sign would you choose for your turbine?
_	

