Estimating and Graphing Polynomials LCHL

Using Geogebra, graph the following polynomials and fill in the table below after graphing each one
NOTE: to put indices into an equation use SHIFT and 6 on keyboard to get ^ symbol, then type degree required [e.g for $(x-5)^{2}$ you'd type in ^2]

Polynomial	Leading coefficient (term with biggest degree/power) positive or negative?	Equation of degree?	Number of roots?	List of roots	Where it crosses $x=$ axis	Where it touches (but doesn't cross) x -axis	End behaviour = Direction of ends/arms (up or down) Both same/different/which up/which down
$\mathrm{f}(\mathrm{x})=\mathrm{x}(\mathrm{x}-1)(\mathrm{x}-2)(\mathrm{x}-3)$							
$\mathrm{f}(\mathrm{x})=\mathrm{x}(\mathrm{x}-2)(\mathrm{x}+5)$							
$\mathrm{y}=\mathrm{x}(\mathrm{x}+4)(\mathrm{x}-7)(\mathrm{x}-2)(x-5)^{2}$							
$y=(-x)(x+4)(x-2)(x-5)^{2}$							
$y=(x)^{2}(x+2)^{3}$							
$\mathrm{y}=\mathrm{x}^{5}-12 \mathrm{x}^{4}-40 \mathrm{x}^{3}+120 x^{2}$							
$\mathrm{y}=-\mathrm{x}(\mathrm{x}+3)(x+4)^{3}$							

(Reflection: What examples above have the same characteristics? Is there a pattern to how each graph looks compared to the equation?)

What conclusions can you draw from your graphs and table about the following:

A polynomial of even degree?
A polynomial of odd degree?
The leading coefficient is positive?
The leading coefficient is negative?
Polynomial which has a factor or root which occurs multiple times (known as Multiplicity)?
Polynomial which has a factor or root which occurs 2 times?
Polynomial which has a factor or root which occurs 3 times?

