4.1.12 - The Binomial Theorem I

4.1-Algebra - Expressions
Leaving Certificate Mathematics

Higher Level ONLY

Notation

$$
n!=n \times(n-1) \times(n-2) \times \ldots \times 3 \times 2 \times 1 \quad \ldots \text { " } \mathbf{n} \text { factorial" }
$$

Notation

$$
n!=n \times(n-1) \times(n-2) \times \ldots \times 3 \times 2 \times 1 \quad \ldots \text { " } \mathbf{n} \text { factorial" }
$$

Examples:

Notation

$$
n!=n \times(n-1) \times(n-2) \times \ldots \times 3 \times 2 \times 1 \quad \ldots \text { " } \mathbf{n} \text { factorial" }
$$

Examples:

$3!$

Notation

$$
n!=n \times(n-1) \times(n-2) \times \ldots \times 3 \times 2 \times 1 \quad \ldots \text { " } \mathbf{n} \text { factorial" }
$$

Examples:

$$
3!=3 \times 2 \times 1
$$

Notation

$$
n!=n \times(n-1) \times(n-2) \times \ldots \times 3 \times 2 \times 1 \quad \ldots \text { " } \mathbf{n} \text { factorial" }
$$

Examples:

$$
\begin{aligned}
3! & =3 \times 2 \times 1 \\
& =6
\end{aligned}
$$

Notation

$n!=n \times(n-1) \times(n-2) \times \ldots \times 3 \times 2 \times 1 \quad \ldots$ "n factorial"

Examples:

$$
\begin{aligned}
3! & =3 \times 2 \times 1 \quad 5! \\
& =6
\end{aligned}
$$

Notation

$n!=n \times(n-1) \times(n-2) \times \ldots \times 3 \times 2 \times 1 \quad \ldots$ "n factorial"

Examples:

$$
\begin{aligned}
3! & =3 \times 2 \times 1 \quad 5!=5 \times 4 \times 3 \times 2 \times 1 \\
& =6
\end{aligned}
$$

Notation

$n!=n \times(n-1) \times(n-2) \times \ldots \times 3 \times 2 \times 1 \quad \ldots$ "n factorial"

Examples:

$$
\begin{array}{rlrl}
3! & =3 \times 2 \times 1 & 5! & =5 \times 4 \times 3 \times 2 \times 1 \\
& =6 & & =120
\end{array}
$$

Notation

$n!=n \times(n-1) \times(n-2) \times \ldots \times 3 \times 2 \times 1 \quad \ldots " n$ factorial"

Examples:

$$
\begin{array}{rlrl}
3! & =3 \times 2 \times 1 & 5! & =5 \times 4 \times 3 \times 2 \times 1 \\
& =6 & & =120
\end{array}
$$

Notation

$n!=n \times(n-1) \times(n-2) \times \ldots \times 3 \times 2 \times 1 \quad \ldots " n$ factorial"

Examples:

$$
\begin{array}{rlrl}
3! & =3 \times 2 \times 1 & 5! & =5 \times 4 \times 3 \times 2 \times 1
\end{array} \quad 1!=11
$$

Notation

$n!=n \times(n-1) \times(n-2) \times \ldots \times 3 \times 2 \times 1 \quad \ldots " n$ factorial"

Examples:

$$
\begin{array}{rlrl}
3! & =3 \times 2 \times 1 & 5! & =5 \times 4 \times 3 \times 2 \times 1 \\
& =6 & & 1!=1 \\
& & & 0!
\end{array}
$$

Notation

$n!=n \times(n-1) \times(n-2) \times \ldots \times 3 \times 2 \times 1 \quad \ldots " n$ factorial"

Examples:

$$
\begin{aligned}
& 3!=3 \times 2 \times 1 \quad 5!=5 \times 4 \times 3 \times 2 \times 1 \\
& 1!=1 \\
& =6=120 \\
& 0!=1
\end{aligned}
$$

We can choose r objects from n objects in the following way:

We can choose r objects from n objects in the following way:

$$
\binom{n}{r}=\frac{n!}{r!(n-r)!} \quad \ldots " n \text { choose } r "
$$

We can choose r objects from n objects in the following way:

$$
\binom{n}{r}=\frac{n!}{r!(n-r)!} \quad \ldots " \mathbf{n} \text { choose } \mathbf{r} "
$$

Example:

We can choose r objects from n objects in the following way:

$$
\binom{n}{r}=\frac{n!}{r!(n-r)!} \quad \ldots " \mathbf{n} \text { choose } \mathbf{r} "
$$

Example:

$$
\binom{5}{2}
$$

We can choose r objects from n objects in the following way:

$$
\binom{n}{r}=\frac{n!}{r!(n-r)!} \quad \ldots " \mathbf{n} \text { choose } \mathbf{r} "
$$

Example:

$$
\binom{5}{2}=\frac{5!}{2!(5-2)!}
$$

We can choose r objects from n objects in the following way:

$$
\binom{n}{r}=\frac{n!}{r!(n-r)!} \quad \ldots " \mathbf{n} \text { choose } \mathbf{r} "
$$

Example:

$$
\begin{aligned}
\binom{5}{2} & =\frac{5!}{2!(5-2)!} \\
& =\frac{5!}{2!\times 3!}
\end{aligned}
$$

We can choose r objects from n objects in the following way:

$$
\binom{n}{r}=\frac{n!}{r!(n-r)!} \quad \ldots \text { "n choose } r "
$$

Example:

$$
\begin{aligned}
\binom{5}{2} & =\frac{5!}{2!(5-2)!} \\
& =\frac{5!}{2!\times 3!} \\
& =\frac{5 \times 4 \times 3 \times 2 \times 1}{2 \times 1 \times 3 \times 2 \times 1}
\end{aligned}
$$

We can choose r objects from n objects in the following way:

$$
\binom{n}{r}=\frac{n!}{r!(n-r)!} \quad \ldots \text { "n choose } r "
$$

Example:

$$
\begin{aligned}
\binom{5}{2} & =\frac{5!}{2!(5-2)!} \\
& =\frac{5!}{2!\times 3!} \\
& =\frac{5 \times 4 \times 3 \times 2 \times 1}{2 \times 1 \times 3 \times 2 \times 1} \\
& =\frac{120}{12}
\end{aligned}
$$

We can choose r objects from n objects in the following way:

$$
\binom{n}{r}=\frac{n!}{r!(n-r)!} \quad \ldots \text { "n choose } r "
$$

Example:

$$
\begin{aligned}
\binom{5}{2} & =\frac{5!}{2!(5-2)!} \\
& =\frac{5!}{2!\times 3!} \\
& =\frac{5 \times 4 \times 3 \times 2 \times 1}{2 \times 1 \times 3 \times 2 \times 1} \\
& =\frac{120}{12} \\
& =10
\end{aligned}
$$

We can choose r objects from n objects in the following way:

$$
\binom{n}{r}=\frac{n!}{r!(n-r)!} \quad \ldots " \mathbf{n} \text { choose } \mathbf{r} "
$$

Example:

$$
\begin{aligned}
\binom{5}{2} & =\frac{5!}{2!(5-2)!} \\
& =\frac{5!}{2!\times 3!} \\
& =\frac{5 \times 4 \times 3 \times 2 \times 1}{2 \times 1 \times 3 \times 2 \times 1} \\
& =\frac{120}{12} \\
& =10
\end{aligned}
$$

We can choose r objects from n objects in the following way:

$$
\binom{n}{r}=\frac{n!}{r!(n-r)!} \quad \ldots " \mathbf{n} \text { choose } \mathbf{r} "
$$

Example:

$$
\begin{aligned}
\binom{5}{2} & =\frac{5!}{2!(5-2)!} \\
& =\frac{5!}{2!\times 3!} \\
& =\frac{5 \times 4 \times 3 \times 2 \times 1}{2 \times 1 \times 3 \times 2 \times 1} \\
& =\frac{120}{12} \\
& =10
\end{aligned}
$$

We can choose r objects from n objects in the following way:

$$
\binom{n}{r}=\frac{n!}{r!(n-r)!} \quad \ldots " \mathbf{n} \text { choose } \mathbf{r} "
$$

Example:

$$
\begin{aligned}
\binom{5}{2} & =\frac{5!}{2!(5-2)!} \\
& =\frac{5!}{2!\times 3!} \\
& =\frac{5 \times 4 \times 3 \times 2 \times 1}{2 \times 1 \times 3 \times 2 \times 1} \\
& =\frac{120}{12} \\
& =10
\end{aligned}
$$

$$
\text { In general, } \quad\binom{n}{r}=\frac{n \times(n-1) \times \ldots \times(n-r+2) \times(n-r+1)}{r \times(r-1) \times \ldots \times 2 \times 1}
$$

In general, $\quad\binom{n}{r}=\frac{n \times(n-1) \times \ldots \times(n-r+2) \times(n-r+1)}{r \times(r-1) \times \ldots \times 2 \times 1}$

Example:

In general, $\quad\binom{n}{r}=\frac{n \times(n-1) \times \ldots \times(n-r+2) \times(n-r+1)}{r \times(r-1) \times \ldots \times 2 \times 1}$

Example:

$$
\binom{10}{3}
$$

In general, $\quad\binom{n}{r}=\frac{n \times(n-1) \times \ldots \times(n-r+2) \times(n-r+1)}{r \times(r-1) \times \ldots \times 2 \times 1}$

Example:

$$
\binom{10}{3}=\frac{10 \times 9 \times 8}{3 \times 2 \times 1}
$$

In general, $\quad\binom{n}{r}=\frac{n \times(n-1) \times \ldots \times(n-r+2) \times(n-r+1)}{r \times(r-1) \times \ldots \times 2 \times 1}$

Example:

$$
\begin{aligned}
\binom{10}{3} & =\frac{10 \times 9 \times 8}{3 \times 2 \times 1} \\
& =120
\end{aligned}
$$

