4.1.12 - The Binomial Theorem I

4.1 - Algebra - Expressions

Leaving Certificate Mathematics

Higher Level ONLY

Notation

$n! = n \times (n-1) \times (n-2) \times \ldots \times 3 \times 2 \times 1$... "n factorial"

Examples:

3!

Examples:

 $3! \quad = \quad 3\times 2\times 1$

$$\begin{array}{rcl} 3! & = & 3 \times 2 \times 1 \\ & = & 6 \end{array}$$

$$3! = 3 \times 2 \times 1 \qquad 5! \\ = 6$$

$$3! = 3 \times 2 \times 1 \qquad 5! = 5 \times 4 \times 3 \times 2 \times 1 = 6$$

Examples:

 $3! = 3 \times 2 \times 1 \qquad 5! = 5 \times 4 \times 3 \times 2 \times 1$ $= 6 \qquad = 120$

$$n! = n \times (n-1) \times (n-2) \times \ldots \times 3 \times 2 \times 1$$
 ... "n factorial"

$$n! = n \times (n-1) \times (n-2) \times \ldots \times 3 \times 2 \times 1$$
 ... "n factorial"

$$n! = n \times (n-1) \times (n-2) \times \ldots \times 3 \times 2 \times 1$$
 ... "n factorial"

3!	=	$3 \times 2 \times 1$	5!	=	5 imes 4 imes 3 imes 2 imes 1	1!	=	1
	=	6		=	120	0!	=	1

 $\binom{n}{r} = \frac{n!}{r!(n-r)!}$... "n choose r"

 $\binom{n}{r} = \frac{n!}{r!(n-r)!}$... "n choose r"

 $\binom{n}{r} = \frac{n!}{r!(n-r)!}$... "n choose r"

Example:

 $\binom{5}{2}$

 $\binom{n}{r} = \frac{n!}{r!(n-r)!}$... "n choose r"

$$\binom{5}{2} = \frac{5!}{2!(5-2)!}$$

 $\binom{n}{r} = \frac{n!}{r!(n-r)!}$... "n choose r"

$$\begin{pmatrix} 5 \\ 2 \end{pmatrix} = \frac{5!}{2!(5-2)!} \\ = \frac{5!}{2! \times 3!}$$

 $\binom{n}{r} = \frac{n!}{r!(n-r)!}$... "n choose r"

$$\begin{pmatrix} 5\\2 \end{pmatrix} = \frac{5!}{2!(5-2)!}$$

$$= \frac{5!}{2! \times 3!}$$

$$= \frac{5 \times 4 \times 3 \times 2 \times 1}{2 \times 1 \times 3 \times 2 \times 1}$$

 $\binom{n}{r} = \frac{n!}{r!(n-r)!}$... "n choose r"

$$\begin{pmatrix} 5\\2 \end{pmatrix} = \frac{5!}{2!(5-2)!}$$

$$= \frac{5!}{2! \times 3!}$$

$$= \frac{5 \times 4 \times 3 \times 2 \times 1}{2 \times 1 \times 3 \times 2 \times 1}$$

$$= \frac{120}{12}$$

 $\binom{n}{r} = \frac{n!}{r!(n-r)!}$... "n choose r"

$$\begin{pmatrix} 5\\2 \end{pmatrix} = \frac{5!}{2!(5-2)!}$$

$$= \frac{5!}{2! \times 3!}$$

$$= \frac{5 \times 4 \times 3 \times 2 \times 1}{2 \times 1 \times 3 \times 2 \times 1}$$

$$= \frac{120}{12}$$

$$= 10$$

 $\binom{n}{r} = \frac{n!}{r!(n-r)!}$... "n choose r"

$$\begin{pmatrix} 5\\2 \end{pmatrix} = \frac{5!}{2!(5-2)!}$$

$$= \frac{5!}{2! \times 3!}$$

$$= \frac{5 \times 4 \times 3 \times 2 \times 1}{2 \times 1 \times 3 \times 2 \times 1}$$

$$= \frac{120}{12}$$

$$= 10$$

$$\begin{pmatrix} 5 \\ 2 \end{pmatrix} = \frac{5 \times 4 \times 3 \times 2 \times 1}{2 \times 1 \times 3 \times 2 \times 1}$$

 $\binom{n}{r} = \frac{n!}{r!(n-r)!}$... "n choose r"

$$\begin{pmatrix} 5\\2 \end{pmatrix} = \frac{5!}{2!(5-2)!} \qquad \begin{pmatrix} 5\\2 \end{pmatrix} = \frac{5 \times 4 \times 3 \times 2 \times 1}{2 \times 1 \times 3 \times 2 \times 1}$$

$$= \frac{5!}{2! \times 3!} \qquad = \frac{5 \times 4}{2 \times 1}$$

$$= \frac{5 \times 4 \times 3 \times 2 \times 1}{2 \times 1 \times 3 \times 2 \times 1}$$

$$= \frac{120}{12}$$

$$= 10$$

 $\binom{n}{r} = \frac{n!}{r!(n-r)!}$... "n choose r"

$$\begin{pmatrix} 5\\2 \end{pmatrix} = \frac{5!}{2!(5-2)!} \qquad \qquad \begin{pmatrix} 5\\2 \end{pmatrix} = \frac{5 \times 4 \times 3 \times 2 \times 1}{2 \times 1 \times 3 \times 2 \times 1}$$

$$= \frac{5!}{2! \times 3!} \qquad \qquad = \frac{5 \times 4}{2 \times 1}$$

$$= \frac{5 \times 4}{2 \times 1} \qquad \qquad = 10$$

$$= \frac{120}{12}$$

$$= 10$$

In general,
$$\binom{n}{r} = \frac{n \times (n-1) \times \dots \times (n-r+2) \times (n-r+1)}{r \times (r-1) \times \dots \times 2 \times 1}$$

In general,
$$\binom{n}{r} = \frac{n \times (n-1) \times \dots \times (n-r+2) \times (n-r+1)}{r \times (r-1) \times \dots \times 2 \times 1}$$

In general,
$$\binom{n}{r} = \frac{n \times (n-1) \times \dots \times (n-r+2) \times (n-r+1)}{r \times (r-1) \times \dots \times 2 \times 1}$$

$$\binom{10}{3}$$

In general,
$$\binom{n}{r} = \frac{n \times (n-1) \times \dots \times (n-r+2) \times (n-r+1)}{r \times (r-1) \times \dots \times 2 \times 1}$$

$$\begin{pmatrix} 10 \\ 3 \end{pmatrix} = \frac{10 \times 9 \times 8}{3 \times 2 \times 1}$$

In general,
$$\binom{n}{r} = \frac{n \times (n-1) \times \dots \times (n-r+2) \times (n-r+1)}{r \times (r-1) \times \dots \times 2 \times 1}$$

$$\begin{pmatrix} 10 \\ 3 \end{pmatrix} = \frac{10 \times 9 \times 8}{3 \times 2 \times 1}$$
$$= 120$$