### 4.2.7 - One Linear, One Quadratic Equation II

4.2 - Algebra - Solving Equations

Leaving Certificate Mathematics

Higher Level ONLY





**Q.** Find the intersection point(s) of the lines:

$$5x + 3y = 15$$
$$x^2 + y^2 - 10y = 9$$

**Q.** Find the intersection point(s) of the lines:

$$5x + 3y = 15$$
$$x^2 + y^2 - 10y = 9$$

#### **Q.** Find the intersection point(s) of the lines:

$$5x + 3y = 15$$
$$x^2 + y^2 - 10y = 9$$

$$5x + 3y = 15$$

#### **Q.** Find the intersection point(s) of the lines:

$$5x + 3y = 15$$
$$x^2 + y^2 - 10y = 9$$

$$5x + 3y = 15$$
$$5x = 15 - 3y$$

#### **Q.** Find the intersection point(s) of the lines:

$$5x + 3y = 15$$
$$x^2 + y^2 - 10y = 9$$

$$5x + 3y = 15$$

$$5x = 15 - 3y$$

$$x = 3 - \frac{3}{5}y$$

#### **Q.** Find the intersection point(s) of the lines:

$$5x + 3y = 15$$
$$x^2 + y^2 - 10y = 9$$

$$5x + 3y = 15$$

$$5x = 15 - 3y$$

$$x = 3 - \frac{3}{5}y$$

#### **Q.** Find the intersection point(s) of the lines:

$$5x + 3y = 15$$
$$x^2 + y^2 - 10y = 9$$

$$5x + 3y = 15$$

$$5x = 15 - 3y$$

$$x = 3 - \frac{3}{5}y$$

Sub 
$$(x = 3 - \frac{3}{5}y)$$
 into  $x^2 + y^2 - 10y = 9$ .

#### **Q.** Find the intersection point(s) of the lines:

$$5x + 3y = 15$$
$$x^2 + y^2 - 10y = 9$$

$$5x + 3y = 15$$

$$5x = 15 - 3y$$

$$x = 3 - \frac{3}{5}y$$

Sub 
$$(x = 3 - \frac{3}{5}y)$$
 into  $x^2 + y^2 - 10y = 9$ . 
$$(3 - \frac{3}{5}y)^2 + y^2 - 10y = 9$$

#### **Q.** Find the intersection point(s) of the lines:

$$5x + 3y = 15$$
$$x^2 + y^2 - 10y = 9$$

$$5x + 3y = 15$$

$$5x = 15 - 3y$$

$$x = 3 - \frac{3}{5}y$$

Sub 
$$(x = 3 - \frac{3}{5}y)$$
 into  $x^2 + y^2 - 10y = 9$ .  

$$(3 - \frac{3}{5}y)^2 + y^2 - 10y = 9$$

$$9 - \frac{18}{5}y + \frac{9}{25}y^2 + y^2 - 10y = 9$$

#### **Q.** Find the intersection point(s) of the lines:

$$5x + 3y = 15$$
$$x^2 + y^2 - 10y = 9$$

$$5x + 3y = 15$$

$$5x = 15 - 3y$$

$$x = 3 - \frac{3}{5}y$$

Sub 
$$(x = 3 - \frac{3}{5}y)$$
 into  $x^2 + y^2 - 10y = 9$ . 
$$(3 - \frac{3}{5}y)^2 + y^2 - 10y = 9$$
 
$$9 - \frac{18}{5}y + \frac{9}{25}y^2 + y^2 - 10y = 9$$
 
$$\frac{34}{25}y^2 - \frac{68}{5}y = 0$$

$$\frac{34}{25}y^2 - \frac{68}{5}y = 0$$

$$\frac{34}{25}y^2 - \frac{68}{5}y = 0$$
$$34y^2 - 340y = 0$$

$$\frac{34}{25}y^2 - \frac{68}{5}y = 0$$
$$34y^2 - 340y = 0$$
$$y^2 - 10y = 0$$

$$\frac{34}{25}y^2 - \frac{68}{5}y = 0$$

$$34y^2 - 340y = 0$$

$$y^2 - 10y = 0$$

$$y(y - 10) = 0$$

$$\frac{34}{25}y^2 - \frac{68}{5}y = 0$$

$$34y^2 - 340y = 0$$

$$y^2 - 10y = 0$$

$$y(y - 10) = 0$$

$$y = 0$$

$$\frac{34}{25}y^2 - \frac{68}{5}y = 0$$

$$34y^2 - 340y = 0$$

$$y^2 - 10y = 0$$

$$y(y - 10) = 0$$

$$y = 0$$

$$\therefore x = 3 - \frac{3}{5}(0)$$

$$\frac{34}{25}y^2 - \frac{68}{5}y = 0$$
$$34y^2 - 340y = 0$$
$$y^2 - 10y = 0$$
$$y(y - 10) = 0$$

$$y = 0$$

$$\therefore x = 3 - \frac{3}{5}(0)$$

$$= 3$$

$$\frac{34}{25}y^2 - \frac{68}{5}y = 0$$

$$34y^2 - 340y = 0$$

$$y^2 - 10y = 0$$

$$y(y - 10) = 0$$

$$y = 0$$

$$\therefore x = 3 - \frac{3}{5}(0)$$

$$= 3$$

$$\therefore (x, y) = (3, 0)$$

$$\frac{34}{25}y^2 - \frac{68}{5}y = 0$$

$$34y^2 - 340y = 0$$

$$y^2 - 10y = 0$$

$$y(y - 10) = 0$$

$$y = 0 
∴ x = 3 - \frac{3}{5}(0) 
= 3 
∴ (x,y) = (3,0)$$

$$\frac{34}{25}y^2 - \frac{68}{5}y = 0$$

$$34y^2 - 340y = 0$$

$$y^2 - 10y = 0$$

$$y(y - 10) = 0$$

$$y = 0$$
  
∴  $x = 3 - \frac{3}{5}(0)$   
 $y - 10 = 0$   
 $y = 10$   
 $y = 10$   
 $y = 10$   
 $y = 10$ 

$$\frac{34}{25}y^2 - \frac{68}{5}y = 0$$
$$34y^2 - 340y = 0$$
$$y^2 - 10y = 0$$
$$y(y - 10) = 0$$

$$y = 0$$
  
 $\therefore x = 3 - \frac{3}{5}(0)$   
 $= 3$   
 $\therefore (x,y) = (3,0)$   
 $y - 10 = 0$   
 $y = 10$   
 $\therefore x = 3 - \frac{3}{5}(10)$ 

$$\frac{34}{25}y^2 - \frac{68}{5}y = 0$$
$$34y^2 - 340y = 0$$
$$y^2 - 10y = 0$$
$$y(y - 10) = 0$$

$$y = 0$$
  
 $\therefore x = 3 - \frac{3}{5}(0)$   
 $= 3$   
 $\therefore (x, y) = (3, 0)$   
 $y - 10 = 0$   
 $y = 10$   
 $\therefore x = 3 - \frac{3}{5}(10)$   
 $= 3 - 6$ 

$$\frac{34}{25}y^2 - \frac{68}{5}y = 0$$
$$34y^2 - 340y = 0$$
$$y^2 - 10y = 0$$
$$y(y - 10) = 0$$

$$y = 0$$
  
 $x = 3 - \frac{3}{5}(0)$   
 $y = 10$   
 $x = 3$   
 $x = 3 - \frac{3}{5}(10)$   
 $x = 3 - 6$   
 $x = 3 - 6$ 

$$\frac{34}{25}y^2 - \frac{68}{5}y = 0$$
$$34y^2 - 340y = 0$$
$$y^2 - 10y = 0$$
$$y(y - 10) = 0$$

$$y = 0$$
  
∴  $x = 3 - \frac{3}{5}(0)$   
 $y = 10$   
∴  $y = 10$   
∴  $y = 3 - \frac{3}{5}(10)$   
∴  $y = 3 - \frac{3}{5}(10)$ 

Answer:

$$\frac{34}{25}y^2 - \frac{68}{5}y = 0$$
$$34y^2 - 340y = 0$$
$$y^2 - 10y = 0$$
$$y(y - 10) = 0$$

$$y = 0$$
  
∴  $x = 3 - \frac{3}{5}(0)$   
 $y = 10$   
∴  $x = 3 - \frac{3}{5}(10)$   
∴  $x = 3 - \frac{3}{5}(10)$   
∴  $x = 3 - \frac{3}{5}(10)$   
∴  $x = 3 - 6$   
 $x = -3$   
∴  $x = 3 - 3$   
∴  $x = 3 - 3$ 

 $\therefore$  points of intersection: (-3,0),(3,0)