4.3.1 - Inequalities I

4 - Algebra - Inequalities
Leaving Certificate Mathematics

Higher Level \& Ordinary Level

maths
support centre

Inequalities

$x>2$ is an example of an inequality.

Inequalities

$x>2$ is an example of an inequality.
This inequality is true if x is any number greater than 2 .

Inequalities

$x>2$ is an example of an inequality.
This inequality is true if x is any number greater than 2 .

Notation:

Inequalities

$x>2$ is an example of an inequality.
This inequality is true if x is any number greater than 2 .

Notation:

- $x>2$

Inequalities

$x>2$ is an example of an inequality.
This inequality is true if x is any number greater than 2 .

Notation:

- $x>2 \quad x$ is greater than 2 .

Inequalities

$x>2$ is an example of an inequality.
This inequality is true if x is any number greater than 2 .

Notation:

- $x>2 \quad x$ is greater than 2 .
- $x \geq 2$

Inequalities

$x>2$ is an example of an inequality.
This inequality is true if x is any number greater than 2 .

Notation:

- $x>2 \quad x$ is greater than 2 .
- $x \geq 2 \quad x$ is greater than or equal to 2 .

Inequalities

$x>2$ is an example of an inequality.
This inequality is true if x is any number greater than 2 .

Notation:

- $x>2 \quad x$ is greater than 2 .
- $x \geq 2 \quad x$ is greater than or equal to 2 .
- $x<2$

Inequalities

$x>2$ is an example of an inequality.
This inequality is true if x is any number greater than 2 .

Notation:

- $x>2 \quad x$ is greater than 2 .
- $x \geq 2 \quad x$ is greater than or equal to 2 .
- $x<2 \quad x$ is less than 2 .

Inequalities

$x>2$ is an example of an inequality.
This inequality is true if x is any number greater than 2 .

Notation:

- $x>2 \quad x$ is greater than 2 .
- $x \geq 2 \quad x$ is greater than or equal to 2 .
- $x<2 \quad x$ is less than 2 .
- $x \leq 2$

Inequalities

$x>2$ is an example of an inequality.
This inequality is true if x is any number greater than 2 .

Notation:

- $x>2 \quad x$ is greater than 2 .
- $x \geq 2 \quad x$ is greater than or equal to 2 .
- $x<2 \quad x$ is less than 2 .
- $x \leq 2 \quad x$ is less than or equal to 2 .

Inequality Rules

Inequality Rules

- Can add or subtract any number to both sides without changing the sign.

Inequality Rules

- Can add or subtract any number to both sides without changing the sign.
e.g.

$$
4>3
$$

Inequality Rules

- Can add or subtract any number to both sides without changing the sign.
e.g.

$$
\begin{aligned}
4 & >3 \\
\Rightarrow 4+2 & >3+2
\end{aligned}
$$

Inequality Rules

- Can add or subtract any number to both sides without changing the sign.
e.g.

$$
\begin{aligned}
4 & >3 \\
\Rightarrow 4+2 & >3+2 \\
\Rightarrow 6 & >5
\end{aligned}
$$

Inequality Rules

- Can add or subtract any number to both sides without changing the sign.
e.g.

$$
\begin{aligned}
4 & >3 \\
\Rightarrow 4+2 & >3+2 \\
\Rightarrow 6 & >5
\end{aligned}
$$

- Can multiply or divide both sides by a positive number without changing the sign.

Inequality Rules

- Can add or subtract any number to both sides without changing the sign.
e.g.

$$
\begin{aligned}
4 & >3 \\
\Rightarrow 4+2 & >3+2 \\
\Rightarrow 6 & >5
\end{aligned}
$$

- Can multiply or divide both sides by a positive number without changing the sign.
e.g.

$$
6<8
$$

Inequality Rules

- Can add or subtract any number to both sides without changing the sign.
e.g.

$$
\begin{aligned}
4 & >3 \\
\Rightarrow 4+2 & >3+2 \\
\Rightarrow 6 & >5
\end{aligned}
$$

- Can multiply or divide both sides by a positive number without changing the sign.
e.g.

$$
\begin{aligned}
6 & <8 \\
\Rightarrow 2(6) & <2(8)
\end{aligned}
$$

Inequality Rules

- Can add or subtract any number to both sides without changing the sign.
e.g.

$$
\begin{aligned}
4 & >3 \\
\Rightarrow 4+2 & >3+2 \\
\Rightarrow 6 & >5
\end{aligned}
$$

- Can multiply or divide both sides by a positive number without changing the sign.
e.g.

$$
\begin{aligned}
6 & <8 \\
\Rightarrow 2(6) & <2(8) \\
\Rightarrow 12 & <16
\end{aligned}
$$

Inequality Rules

- Can multiply or divide both sides by a negative number, but must reverse the sign.

Inequality Rules

- Can multiply or divide both sides by a negative number, but must reverse the sign.
e.g.

$$
6<8
$$

Inequality Rules

- Can multiply or divide both sides by a negative number, but must reverse the sign.
e.g.

$$
\begin{aligned}
6 & <8 \\
\Rightarrow(-1)(6) & >(-1)(8)
\end{aligned}
$$

Inequality Rules

- Can multiply or divide both sides by a negative number, but must reverse the sign.
e.g.

$$
\begin{aligned}
6 & <8 \\
\Rightarrow(-1)(6) & >(-1)(8) \\
\Rightarrow-6 & >-8
\end{aligned}
$$

