4.3.5 - Absolute Value I

4.3-Algebra - Inequalities
Leaving Certificate Mathematics

Higher Level ONLY

Absolute Value

The absolute value of a number is its magnitude without regard to its sign.

Absolute Value

The absolute value of a number is its magnitude without regard to its sign.

- The non-negative value of a number.

Absolute Value

The absolute value of a number is its magnitude without regard to its sign.

- The non-negative value of a number.
- The absolute value of \mathbf{x} is written $|x|$.

Absolute Value

The absolute value of a number is its magnitude without regard to its sign.

- The non-negative value of a number.
- The absolute value of \mathbf{x} is written $|x|$.
- e.g. $|-2|=2$,

Absolute Value

The absolute value of a number is its magnitude without regard to its sign.

- The non-negative value of a number.
- The absolute value of \mathbf{x} is written $|x|$.
- e.g. $|-2|=2, \quad|4.5|=4.5$,

Absolute Value

The absolute value of a number is its magnitude without regard to its sign.

- The non-negative value of a number.
- The absolute value of \mathbf{x} is written $|x|$.
- e.g. $|-2|=2, \quad|4.5|=4.5, \quad\left|-\frac{1}{2}\right|=\frac{1}{2}$

Absolute Value

The absolute value of a number is its magnitude without regard to its sign.

- The non-negative value of a number.
- The absolute value of \mathbf{x} is written $|x|$.
- e.g. $|-2|=2, \quad|4.5|=4.5, \quad\left|-\frac{1}{2}\right|=\frac{1}{2}$

What it means:

Absolute Value

The absolute value of a number is its magnitude without regard to its sign.

- The non-negative value of a number.
- The absolute value of \mathbf{x} is written $|x|$.
- e.g. $|-2|=2, \quad|4.5|=4.5, \quad\left|-\frac{1}{2}\right|=\frac{1}{2}$

What it means: Distance from 0 on the number line.

Absolute Value

The absolute value of a number is its magnitude without regard to its sign.

- The non-negative value of a number.
- The absolute value of \mathbf{x} is written $|x|$.
- e.g. $|-2|=2, \quad|4.5|=4.5, \quad\left|-\frac{1}{2}\right|=\frac{1}{2}$

What it means: Distance from 0 on the number line.

Also called modulus.

Example 1

Q. \quad Solve for x if $|x+3|=2$.

Example 1

Q. \quad Solve for x if $|x+3|=2$.

Answer:

Example 1

Q. \quad Solve for x if $|x+3|=2$.

Answer: $\quad|x+3|=2$

Example 1

Q. \quad Solve for x if $|x+3|=2$.

Answer:

$$
\begin{aligned}
|x+3| & =2 \\
(|x+3|)^{2} & =2^{2}
\end{aligned}
$$

Example 1

Q. \quad Solve for x if $|x+3|=2$.

Answer:

$$
\begin{aligned}
|x+3| & =2 \\
(|x+3|)^{2} & =2^{2} \\
(x+3)^{2} & =4
\end{aligned}
$$

Example 1

Q. Solve for x if $|x+3|=2$.

Answer:

$$
\begin{aligned}
|x+3| & =2 \\
(|x+3|)^{2} & =2^{2} \\
(x+3)^{2} & =4 \\
x^{2}+6 x+9 & =4
\end{aligned}
$$

Example 1

Q. \quad Solve for x if $|x+3|=2$.

Answer:

$$
\begin{aligned}
|x+3| & =2 \\
(|x+3|)^{2} & =2^{2} \\
(x+3)^{2} & =4 \\
x^{2}+6 x+9 & =4 \\
x^{2}+6 x+5 & =0
\end{aligned}
$$

Example 1

Q. \quad Solve for x if $|x+3|=2$.

Answer:

$$
\begin{aligned}
|x+3| & =2 \\
(|x+3|)^{2} & =2^{2} \\
(x+3)^{2} & =4 \\
x^{2}+6 x+9 & =4 \\
x^{2}+6 x+5 & =0 \\
(x+5)(x+1) & =0
\end{aligned}
$$

Example 1

Q. Solve for x if $|x+3|=2$.

Answer:

$$
\begin{aligned}
|x+3| & =2 \\
(|x+3|)^{2} & =2^{2} \\
(x+3)^{2} & =4 \\
x^{2}+6 x+9 & =4 \\
x^{2}+6 x+5 & =0 \\
(x+5)(x+1) & =0
\end{aligned}
$$

$$
x+5=0
$$

Example 1

Q. Solve for x if $|x+3|=2$.

Answer:

$$
\begin{aligned}
&|x+3|=2 \\
&(|x+3|)^{2}=2^{2} \\
&(x+3)^{2}=4 \\
& x^{2}+6 x+9=4 \\
& x^{2}+6 x+5=0 \\
&(x+5)(x+1)=0 \\
& x+5=0 \\
& x=-5
\end{aligned}
$$

Example 1

Q. \quad Solve for x if $|x+3|=2$.

Answer:

$$
\begin{aligned}
&|x+3|=2 \\
&(|x+3|)^{2}=2^{2} \\
&(x+3)^{2}=4 \\
& x^{2}+6 x+9=4 \\
& x^{2}+6 x+5=0 \\
&(x+5)(x+1)=0 \\
& x+5=0 \\
& x=-5
\end{aligned}
$$

Example 1

Q. \quad Solve for x if $|x+3|=2$.

Answer:

$$
\begin{aligned}
&|x+3|=2 \\
&(|x+3|)^{2}=2^{2} \\
&(x+3)^{2}=4 \\
& x^{2}+6 x+9=4 \\
& x^{2}+6 x+5=0 \\
&(x+5)(x+1)=0 \\
& \\
& x+5=0 \\
& x=-5 \\
& x+1=0 \\
& x=-1
\end{aligned}
$$

Example 1

Q. \quad Solve for x if $|x+3|=2$.

Answer:

$$
\begin{aligned}
&|x+3|=2 \\
&(|x+3|)^{2}=2^{2} \\
&(x+3)^{2}=4 \\
& x^{2}+6 x+9=4 \\
& x^{2}+6 x+5=0 \\
&(x+5)(x+1)=0 \\
& x+5=0 \\
& x=-5 \\
& x+1=0 \\
& x=-5,-1
\end{aligned}
$$

