4.4.2 - The Conjugate Root Theorem

4.4 - Algebra - Complex Numbers

Leaving Certificate Mathematics

Higher Level ONLY

If z = a + bi is a root of the polynomial f(z) with real coefficients,

If z = a + bi is a root of the polynomial f(z) with real coefficients, then $\overline{z} = a - bi$ is also a root,

If z = a + bi is a root of the polynomial f(z) with real coefficients, then $\overline{z} = a - bi$ is also a root, for $a, b \in \mathbb{R}$.

If z = a + bi is a root of the polynomial f(z) with real coefficients, then $\overline{z} = a - bi$ is also a root, for $a, b \in \mathbb{R}$.

Example:

If z = a + bi is a root of the polynomial f(z) with real coefficients, then $\overline{z} = a - bi$ is also a root, for $a, b \in \mathbb{R}$.

Example:

 $f(z) = z^2 - 4z + 5$

If z = a + bi is a root of the polynomial f(z) with real coefficients, then $\overline{z} = a - bi$ is also a root, for $a, b \in \mathbb{R}$.

Example:

 $f(z) = z^2 - 4z + 5$ z = 2 + i is a root.

If z = a + bi is a root of the polynomial f(z) with real coefficients, then $\overline{z} = a - bi$ is also a root, for $a, b \in \mathbb{R}$.

Example:

 $f(z) = z^2 - 4z + 5$ z = 2 + i is a root. $\therefore \ \overline{z} = 2 - i \text{ is also a root.}$

Q. If z = 2 + 3i is a root of $f(z) = z^2 - 4z + 13$,

Q. If z = 2 + 3i is a root of $f(z) = z^2 - 4z + 13$, show that $\overline{z} = 2 - 3i$ is another root.

Q. If z = 2 + 3i is a root of $f(z) = z^2 - 4z + 13$, show that $\overline{z} = 2 - 3i$ is another root.

Answer:

Q. If z = 2 + 3i is a root of $f(z) = z^2 - 4z + 13$, show that $\overline{z} = 2 - 3i$ is another root.

Answer:

f(z) = 0 for any z a root.

Q. If z = 2 + 3i is a root of $f(z) = z^2 - 4z + 13$, show that $\overline{z} = 2 - 3i$ is another root.

Answer:

- f(z) = 0 for any z a root.
- \therefore Test f(2-3i):

Q. If z = 2 + 3i is a root of $f(z) = z^2 - 4z + 13$, show that $\overline{z} = 2 - 3i$ is another root.

Answer:

- f(z) = 0 for any z a root.
- \therefore Test f(2-3i):

f(2-3i)

Q. If z = 2 + 3i is a root of $f(z) = z^2 - 4z + 13$, show that $\overline{z} = 2 - 3i$ is another root.

Answer:

- f(z) = 0 for any z a root.
- \therefore Test f(2-3i):

$$f(2-3i) = (2-3i)^2$$

Q. If z = 2 + 3i is a root of $f(z) = z^2 - 4z + 13$, show that $\overline{z} = 2 - 3i$ is another root.

Answer:

$$f(z) = 0$$
 for any z a root.

$$f(2-3i) = (2-3i)^2 - 4(2-3i)$$

Q. If z = 2 + 3i is a root of $f(z) = z^2 - 4z + 13$, show that $\overline{z} = 2 - 3i$ is another root.

Answer:

$$f(z) = 0$$
 for any z a root.

$$f(2-3i) = (2-3i)^2 - 4(2-3i) + 13$$

Q. If z = 2 + 3i is a root of $f(z) = z^2 - 4z + 13$, show that $\overline{z} = 2 - 3i$ is another root.

Answer:

$$f(z) = 0$$
 for any z a root.

$$f(2-3i) = (2-3i)^2 - 4(2-3i) + 13$$

= 4 - 12i + 9i²

Q. If z = 2 + 3i is a root of $f(z) = z^2 - 4z + 13$, show that $\overline{z} = 2 - 3i$ is another root.

Answer:

$$f(z) = 0$$
 for any z a root.

$$f(2-3i) = (2-3i)^2 - 4(2-3i) + 13$$

= 4 - 12i + 9i^2 - 8 + 12i

Q. If z = 2 + 3i is a root of $f(z) = z^2 - 4z + 13$, show that $\overline{z} = 2 - 3i$ is another root.

Answer:

$$f(z) = 0$$
 for any z a root.

$$f(2-3i) = (2-3i)^2 - 4(2-3i) + 13$$

= 4 - 12i + 9i^2 - 8 + 12i + 13

Q. If z = 2 + 3i is a root of $f(z) = z^2 - 4z + 13$, show that $\overline{z} = 2 - 3i$ is another root.

Answer:

$$f(z) = 0$$
 for any z a root.

$$f(2-3i) = (2-3i)^2 - 4(2-3i) + 13$$

= 4 - 12i + 9i^2 - 8 + 12i + 13
= 9 + 9(-1)

Q. If z = 2 + 3i is a root of $f(z) = z^2 - 4z + 13$, show that $\overline{z} = 2 - 3i$ is another root.

Answer:

$$f(z) = 0$$
 for any z a root.

$$f(2-3i) = (2-3i)^2 - 4(2-3i) + 13$$

= 4-12i+9i^2 - 8+12i+13
= 9+9(-1)
= 0

Q. If z = 2 + 3i is a root of $f(z) = z^2 - 4z + 13$, show that $\overline{z} = 2 - 3i$ is another root.

Answer:

$$f(z) = 0$$
 for any z a root.

 \therefore Test f(2-3i):

$$f(2-3i) = (2-3i)^2 - 4(2-3i) + 13$$

= 4 - 12i + 9i^2 - 8 + 12i + 13
= 9 + 9(-1)
= 0

 \therefore $\bar{z} = 2 - 3i$ is also a root.