4.4.2 - The Conjugate Root Theorem

4.4-Algebra - Complex Numbers

Leaving Certificate Mathematics

Higher Level ONLY

maths
support centre

The Conjugate Root Theorem

The Conjugate Root Theorem

If $z=a+b i$ is a root of the polynomial $f(z)$ with real coefficients,

The Conjugate Root Theorem

If $z=a+b i$ is a root of the polynomial $f(z)$ with real coefficients, then $\bar{z}=a-b i$ is also a root,

The Conjugate Root Theorem

If $z=a+b i$ is a root of the polynomial $f(z)$ with real coefficients, then $\bar{z}=a-b i$ is also a root, for $a, b \in \mathbb{R}$.

The Conjugate Root Theorem

If $z=a+b i$ is a root of the polynomial $f(z)$ with real coefficients, then $\bar{z}=a-b i$ is also a root, for $a, b \in \mathbb{R}$.

Example:

The Conjugate Root Theorem

If $z=a+b i$ is a root of the polynomial $f(z)$ with real coefficients, then $\bar{z}=a-b i$ is also a root, for $a, b \in \mathbb{R}$.

Example:

$f(z)=z^{2}-4 z+5$

The Conjugate Root Theorem

If $z=a+b i$ is a root of the polynomial $f(z)$ with real coefficients, then $\bar{z}=a-b i$ is also a root, for $a, b \in \mathbb{R}$.

Example:

$$
\begin{aligned}
& f(z)=z^{2}-4 z+5 \\
& z=2+i \text { is a root. }
\end{aligned}
$$

The Conjugate Root Theorem

If $z=a+b i$ is a root of the polynomial $f(z)$ with real coefficients, then $\bar{z}=a-b i$ is also a root, for $a, b \in \mathbb{R}$.

Example:

$$
\begin{aligned}
& f(z)=z^{2}-4 z+5 \\
& z=2+i \text { is a root. } \\
& \therefore \quad \bar{z}=2-i \text { is also a root. }
\end{aligned}
$$

Example 1

Q. If $z=2+3 i$ is a root of $f(z)=z^{2}-4 z+13$,

Example 1

Q. If $z=2+3 i$ is a root of $f(z)=z^{2}-4 z+13$, show that $\bar{z}=2-3 i$ is another root.

Example 1

Q. If $z=2+3 i$ is a root of $f(z)=z^{2}-4 z+13$, show that $\bar{z}=2-3 i$ is another root.

Answer:

Example 1

Q. If $z=2+3 i$ is a root of $f(z)=z^{2}-4 z+13$, show that $\bar{z}=2-3 i$ is another root.

Answer:
$f(z)=0$ for any z a root.

Example 1

Q. If $z=2+3 i$ is a root of $f(z)=z^{2}-4 z+13$, show that $\bar{z}=2-3 i$ is another root.

Answer:
$f(z)=0$ for any z a root.
$\therefore \quad$ Test $f(2-3 i)$:

Example 1

Q. If $z=2+3 i$ is a root of $f(z)=z^{2}-4 z+13$, show that $\bar{z}=2-3 i$ is another root.

Answer:
$f(z)=0$ for any z a root.
$\therefore \quad$ Test $f(2-3 i)$:

$$
f(2-3 i)
$$

Example 1

Q. If $z=2+3 i$ is a root of $f(z)=z^{2}-4 z+13$, show that $\bar{z}=2-3 i$ is another root.

Answer:
$f(z)=0$ for any z a root.
$\therefore \quad$ Test $f(2-3 i)$:

$$
f(2-3 i)=(2-3 i)^{2}
$$

Example 1

Q. If $z=2+3 i$ is a root of $f(z)=z^{2}-4 z+13$, show that $\bar{z}=2-3 i$ is another root.

Answer:
$f(z)=0$ for any z a root.
$\therefore \quad$ Test $f(2-3 i)$:

$$
f(2-3 i)=(2-3 i)^{2}-4(2-3 i)
$$

Example 1

Q. If $z=2+3 i$ is a root of $f(z)=z^{2}-4 z+13$, show that $\bar{z}=2-3 i$ is another root.

Answer:
$f(z)=0$ for any z a root.
$\therefore \quad$ Test $f(2-3 i)$:

$$
f(2-3 i)=(2-3 i)^{2}-4(2-3 i)+13
$$

Example 1

Q. If $z=2+3 i$ is a root of $f(z)=z^{2}-4 z+13$, show that $\bar{z}=2-3 i$ is another root.

Answer:
$f(z)=0$ for any z a root.
$\therefore \quad$ Test $f(2-3 i)$:

$$
\begin{aligned}
f(2-3 i) & =(2-3 i)^{2}-4(2-3 i)+13 \\
& =4-12 i+9 i^{2}
\end{aligned}
$$

Example 1

Q. If $z=2+3 i$ is a root of $f(z)=z^{2}-4 z+13$, show that $\bar{z}=2-3 i$ is another root.

Answer:
$f(z)=0$ for any z a root.
$\therefore \quad$ Test $f(2-3 i)$:

$$
\begin{aligned}
f(2-3 i) & =(2-3 i)^{2}-4(2-3 i)+13 \\
& =4-12 i+9 i^{2}-8+12 i
\end{aligned}
$$

Example 1

Q. If $z=2+3 i$ is a root of $f(z)=z^{2}-4 z+13$, show that $\bar{z}=2-3 i$ is another root.

Answer:
$f(z)=0$ for any z a root.
$\therefore \quad$ Test $f(2-3 i)$:

$$
\begin{aligned}
f(2-3 i) & =(2-3 i)^{2}-4(2-3 i)+13 \\
& =4-12 i+9 i^{2}-8+12 i+13
\end{aligned}
$$

Example 1

Q. If $z=2+3 i$ is a root of $f(z)=z^{2}-4 z+13$, show that $\bar{z}=2-3 i$ is another root.

Answer:
$f(z)=0$ for any z a root.
$\therefore \quad$ Test $f(2-3 i)$:

$$
\begin{aligned}
f(2-3 i) & =(2-3 i)^{2}-4(2-3 i)+13 \\
& =4-12 i+9 i^{2}-8+12 i+13 \\
& =9+9(-1)
\end{aligned}
$$

Example 1

Q. If $z=2+3 i$ is a root of $f(z)=z^{2}-4 z+13$, show that $\bar{z}=2-3 i$ is another root.

Answer:
$f(z)=0$ for any z a root.
$\therefore \quad$ Test $f(2-3 i)$:

$$
\begin{aligned}
f(2-3 i) & =(2-3 i)^{2}-4(2-3 i)+13 \\
& =4-12 i+9 i^{2}-8+12 i+13 \\
& =9+9(-1) \\
& =0
\end{aligned}
$$

Example 1

Q. If $z=2+3 i$ is a root of $f(z)=z^{2}-4 z+13$, show that $\bar{z}=2-3 i$ is another root.

Answer:
$f(z)=0$ for any z a root.
$\therefore \quad$ Test $f(2-3 i)$:

$$
\begin{aligned}
f(2-3 i) & =(2-3 i)^{2}-4(2-3 i)+13 \\
& =4-12 i+9 i^{2}-8+12 i+13 \\
& =9+9(-1) \\
& =0
\end{aligned}
$$

$\therefore \quad \bar{z}=2-3 i$ is also a root.

