4.4.3 - Polar Form

4.4 - Algebra - Complex Numbers

Leaving Certificate Mathematics

Higher Level ONLY

A complex number in **polar form** is one written in the form:

A complex number in **polar form** is one written in the form:

$$z = r(\cos\theta + i\sin\theta).$$

For
$$z = x + iy$$
,

For
$$z = x + iy$$
, $r = |z|$

For
$$z = x + iy$$
, $r = |z|$
= $|x + iy|$

For
$$z = x + iy$$
, $r = |z|$

$$= |x + iy|$$

$$= \sqrt{x^2 + y^2}$$

A complex number in **polar form** is one written in the form: $z = r(\cos \theta + i \sin \theta)$.

For
$$z = x + iy$$
, $r = |z|$

$$= |x + iy|$$

$$= \sqrt{x^2 + y^2}$$

 θ is the **argument** of z.

A complex number in **polar form** is one written in the form: $z = r(\cos \theta + i \sin \theta)$.

For
$$z = x + iy$$
, $r = |z|$

$$= |x + iy|$$

$$= \sqrt{x^2 + y^2}$$

 θ is the **argument** of z.

The angle between the line to the point and the **positive x axis**.

Q. Write 1 + i in polar form

Q. Write 1 + i in polar form ... i.e. $r(\cos \theta + i \sin \theta)$.

Q. Write 1 + i in polar form ... i.e. $r(\cos \theta + i \sin \theta)$.

Q. Write
$$1 + i$$
 in polar form ... i.e. $r(\cos \theta + i \sin \theta)$.

$$r = |1+i|$$

Q. Write
$$1 + i$$
 in polar form ... i.e. $r(\cos \theta + i \sin \theta)$.

$$r = |1+i|$$
$$= \sqrt{1^2+1^2}$$

Q. Write 1 + i in polar form ... i.e. $r(\cos \theta + i \sin \theta)$.

$$r = |1+i|$$

$$= \sqrt{1^2 + 1^2}$$

$$= \sqrt{2}$$

Q. Write
$$1 + i$$
 in polar form ... i.e. $r(\cos \theta + i \sin \theta)$.

$$\begin{array}{rcl} r & = & |1+i| \\ & = & \sqrt{1^2+1^2} \\ & = & \sqrt{2} \\ \tan\theta & = & \frac{1}{1} \end{array}$$

Q. Write 1 + i in polar form ... i.e. $r(\cos \theta + i \sin \theta)$.

$$r = |1+i|$$

$$= \sqrt{1^2 + 1^2}$$

$$= \sqrt{2}$$

$$\tan \theta = \frac{1}{1}$$

$$= 1$$

Q. Write 1 + i in polar form ... i.e. $r(\cos \theta + i \sin \theta)$.

$$r = |1+i|$$

$$= \sqrt{1^2 + 1^2}$$

$$= \sqrt{2}$$

$$\tan \theta = \frac{1}{1}$$

$$= 1$$

$$\therefore \theta = \tan^{-1} 1$$

Q. Write
$$1 + i$$
 in polar form ... i.e. $r(\cos \theta + i \sin \theta)$.

$$r = |1+i|$$

$$= \sqrt{1^2 + 1^2}$$

$$= \sqrt{2}$$

$$\tan \theta = \frac{1}{1}$$

$$= 1$$

$$\therefore \theta = \tan^{-1} 1$$

$$= \frac{\pi}{4}$$

Q. Write
$$1 + i$$
 in polar form ... i.e. $r(\cos \theta + i \sin \theta)$.

$$r = |1+i|$$

$$= \sqrt{1^2 + 1^2}$$

$$= \sqrt{2}$$

$$\tan \theta = \frac{1}{1}$$

$$= 1$$

$$\therefore \theta = \tan^{-1} 1$$

$$= \frac{\pi}{4}$$

$$\therefore 1+i =$$

Q. Write
$$1 + i$$
 in polar form ... i.e. $r(\cos \theta + i \sin \theta)$.

$$r = |1+i|$$

$$= \sqrt{1^2 + 1^2}$$

$$= \sqrt{2}$$

$$\tan \theta = \frac{1}{1}$$

$$= 1$$

$$\therefore \theta = \tan^{-1} 1$$

$$= \frac{\pi}{4}$$

$$\therefore 1+i = \sqrt{2}$$

Q. Write 1 + i in polar form ... i.e. $r(\cos \theta + i \sin \theta)$.

$$r = |1+i|$$

$$= \sqrt{1^2 + 1^2}$$

$$= \sqrt{2}$$

$$\tan \theta = \frac{1}{1}$$

$$= 1$$

$$\therefore \theta = \tan^{-1} 1$$

$$= \frac{\pi}{4}$$

$$\therefore 1+i = \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}\right)$$

Q. Write $-1 + i\sqrt{3}$ in polar form

Q. Write $-1 + i\sqrt{3}$ in polar form ... i.e. $r(\cos \theta + i \sin \theta)$.

Q. Write $-1 + i\sqrt{3}$ in polar form ... i.e. $r(\cos \theta + i \sin \theta)$.

Q. Write
$$-1 + i\sqrt{3}$$
 in polar form ... i.e. $r(\cos \theta + i \sin \theta)$.

$$r = |-1 + i\sqrt{3}|$$

Q. Write
$$-1 + i\sqrt{3}$$
 in polar form ... i.e. $r(\cos \theta + i \sin \theta)$.

$$r = |-1 + i\sqrt{3}|$$

= $\sqrt{(-1)^2 + (\sqrt{3})^2}$

Q. Write
$$-1 + i\sqrt{3}$$
 in polar form ... i.e. $r(\cos \theta + i \sin \theta)$.

$$r = |-1 + i\sqrt{3}|$$

= $\sqrt{(-1)^2 + (\sqrt{3})^2}$
= $\sqrt{4}$

Q. Write
$$-1 + i\sqrt{3}$$
 in polar form ... i.e. $r(\cos \theta + i \sin \theta)$.

$$r = |-1 + i\sqrt{3}|$$

$$= \sqrt{(-1)^2 + (\sqrt{3})^2}$$

$$= \sqrt{4} = 2$$

$$\tan \alpha = \frac{\sqrt{3}}{1}$$

Q. Write
$$-1 + i\sqrt{3}$$
 in polar form ... i.e. $r(\cos \theta + i \sin \theta)$.

$$r = |-1 + i\sqrt{3}|$$

$$= \sqrt{(-1)^2 + (\sqrt{3})^2}$$

$$= \sqrt{4} = 2$$

$$\tan \alpha = \frac{\sqrt{3}}{1}$$

$$\therefore \alpha = \tan^{-1} \sqrt{3}$$

Q. Write
$$-1 + i\sqrt{3}$$
 in polar form ... i.e. $r(\cos \theta + i \sin \theta)$.

$$r = |-1 + i\sqrt{3}|$$

$$= \sqrt{(-1)^2 + (\sqrt{3})^2}$$

$$= \sqrt{4} = 2$$

$$\tan \alpha = \frac{\sqrt{3}}{1}$$

$$\therefore \alpha = \tan^{-1} \sqrt{3}$$

$$= \frac{\pi}{3}$$

Q. Write
$$-1 + i\sqrt{3}$$
 in polar form ... i.e. $r(\cos \theta + i \sin \theta)$.

$$r = |-1 + i\sqrt{3}|$$

$$= \sqrt{(-1)^2 + (\sqrt{3})^2}$$

$$= \sqrt{4} = 2$$

$$\tan \alpha = \frac{\sqrt{3}}{1}$$

$$\therefore \alpha = \tan^{-1} \sqrt{3}$$

$$= \frac{\pi}{3}$$

$$\theta = \pi - \frac{\pi}{3}$$

Q. Write
$$-1 + i\sqrt{3}$$
 in polar form ... i.e. $r(\cos \theta + i \sin \theta)$.

$$r = |-1 + i\sqrt{3}|$$

$$= \sqrt{(-1)^2 + (\sqrt{3})^2}$$

$$= \sqrt{4} = 2$$

$$\tan \alpha = \frac{\sqrt{3}}{1}$$

$$\therefore \alpha = \tan^{-1} \sqrt{3}$$

$$= \frac{\pi}{3}$$

$$\theta = \pi - \frac{\pi}{3}$$

$$= \frac{2\pi}{3}$$

Q. Write
$$-1 + i\sqrt{3}$$
 in polar form ... i.e. $r(\cos \theta + i \sin \theta)$.

$$r = |-1 + i\sqrt{3}|$$

$$= \sqrt{(-1)^2 + (\sqrt{3})^2}$$

$$= \sqrt{4} = 2$$

$$\tan \alpha = \frac{\sqrt{3}}{1}$$

$$\therefore \alpha = \tan^{-1} \sqrt{3}$$

$$= \frac{\pi}{3}$$

$$\theta = \pi - \frac{\pi}{3}$$

$$= \frac{2\pi}{3}$$

$$\therefore -1 + i\sqrt{3} = \frac{\pi}{3}$$

Q. Write
$$-1 + i\sqrt{3}$$
 in polar form ... i.e. $r(\cos \theta + i \sin \theta)$.

$$r = |-1 + i\sqrt{3}|$$

$$= \sqrt{(-1)^2 + (\sqrt{3})^2}$$

$$= \sqrt{4} = 2$$

$$\tan \alpha = \frac{\sqrt{3}}{1}$$

$$\therefore \alpha = \tan^{-1} \sqrt{3}$$

$$= \frac{\pi}{3}$$

$$\theta = \pi - \frac{\pi}{3}$$

$$= \frac{2\pi}{3}$$

$$\therefore -1 + i\sqrt{3} = 2$$

Q. Write
$$-1 + i\sqrt{3}$$
 in polar form ... i.e. $r(\cos \theta + i \sin \theta)$.

$$r = |-1 + i\sqrt{3}|$$

$$= \sqrt{(-1)^2 + (\sqrt{3})^2}$$

$$= \sqrt{4} = 2$$

$$\tan \alpha = \frac{\sqrt{3}}{1}$$

$$\therefore \alpha = \tan^{-1} \sqrt{3}$$

$$= \frac{\pi}{3}$$

$$\theta = \pi - \frac{\pi}{3}$$

$$= \frac{2\pi}{3}$$

$$\therefore -1 + i\sqrt{3} = 2(\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3})$$