Blackwater Community School

Leaving Cert Physics learning outcomes

Each topic has a set of boxes which the pupil can tick to show how they understand and know the topic. This is useful for revision and selfevaluation. **Bold** text indicates **higher level only content only**. Items <u>underlined</u> are mandatory experiments. Any items indented with an arrow represent a link to other areas of the Physics course that overlap in terms of calculations, concepts and questions asked in the Leaving Cert

Contents

Mechanics	
Heat	
Waves and sound	
Optics	
Wave nature of light	
Electricity	
Modern Physics	

Introduction to Physics

Good	Fair	Poor
	Good	Good Fair

Mechanics

M1 Linear Motion	Good	Fair	Poor
By the end of this section pupils should be able to:			
Be familiar with the SI units of mass, length and time			
Define displacement, velocity and acceleration and give their units			
Be able to manipulate and use the equations of motion in linear (horizontal and vertical) motion calculations			
Be able to derive the equations of motion			
Measure velocity and acceleration using lab apparatus			
Measure 'g' using lab apparatus			
Plot distance-time and velocity-time graphs			
Read and critically analyse distance time and velocity time graphs to calculate velocities, accelerations and distances travelled			
Identify the relevance of linear motion in real world examples such as athletics, cars, rocket motion, etc.			
M2 Vectors and Scalars	Good	Fair	Poor
By the end of this section pupils should be able to:			
Distinguish between vectors and scalars			
Calculate the resultant of horizontal vectors			
Calculate the resultant of perpendicular vectors using the triangle and parallelogram laws			
Resolve a vector into perpendicular components			
Find the resultant of two or more vectors by calculation and experiment			
Interpret everyday examples of vectors, e.g. a ball rolling down a hill, wheelchair going up a ramp, etc.			

M3 Newton's Laws of motion	Good	Fair	Poor
By the end of this section pupils should be able to:			
State Newton's 3 Laws			
Verify Newton's 2 nd Law using lab apparatus			
Define force and momentum and give their units			
Identify the vector nature of force and momentum and as such calculate resultant forces and momentums			
Explain how F=ma is a special case of Newton's 2 nd Law			
Be able to use F=ma in conjunction with uvast equations in calculations			
Define friction as an opposing force of motion			
Identify everyday applications of Newton's Laws, e.g. seatbelts, rocket travel, sports, ball games, <i>Specialist equations: The elevator, skydiver,</i>			
Identify everyday examples of friction, e.g. tyre grip, reduce with lubricants, air resistance			
M4 Conservation of Momentum	Good	Fair	Poor
By the end of this section pupils should be able to:			
State the Principle of Conservation of Momentum			
Demonstrate the PCM using lab apparatus			
Use the PCM in, conjunction with F=ma and uvast equations to complete appropriate calculations on mechanical collisions Specialist questions: Gun and bullet, golf ball and club, bullet and block, car and lorry in opposite directions			
Give real world examples of mechanical collisions, e.g. ball games, spacecraft, jet aircraft, gun			

M5 Pressure, Gravity, Moments	Good	Fair	Poor
By the end of this section pupils should be able to:			
Density/Pressure:			
Define pressure and density and give their units			
Calculate pressures exerted in solids using P=F/A			
Calculate pressures exerted in liquids using P = phg			
State Archimedes' Principle and the Law of Flotation			
Explain what is meant by upthrust and give examples of its application, e.g. keeping up ships, measuring impurity of King's crown			
Demonstrate Archimedes' Principle and the Law of Flotation			
Outline how a hydrometer works and give examples of its uses Specialist questions: block under water (float/sink?), buoyancy calculations, submarine, horse on water barge			
Verify Boyle's Law			
Demonstrate pressure in gases using collapsing coke can Appreciate the historical significance as Robert Boyle as a local scientist and the implications of his discoveries for the scientific world			
Give everyday examples of pressures in gases, e.g. the bends, the weather			
Calculate changes in pressure according to changes in volume using Boyle's Law (PV=k)			
Gravity:			
State Newton's Universal Law of Gravitation			
Explain why Newton's Universal Law of Gravitation is an example of an inverse square law			

Explain why certain planets (E.g. Earth) can hold an atmosphere		l
Use Newton's Equation $F = G \frac{m_1 m_2}{r^2}$ to calculate forces, masses, distances between bodies, and values for g and weights on other planets		1
Specialist questions: weightlessness between Earth and Moon		l
Understand the relationship between gravitational force and weight		I
Calculate values for g on Earth and other planets using $g = GM/d^2$		l
<i>Moments:</i> Define moments, levers, couple and give examples of each		1
Use M=Fd in calculations involving perpendicular, coplanar forces		l
Use M=Fd and vectors to calculate moments for non-perpendicular forces Specialist questions: People carrying large weight on a bar, walking up hill with bar		
Synthesise the concepts of work, energy and power with other areas of the Physics course, namely moments experience by current carrying coil in a magnetic field Distinguish between static and dynamic equilibrium		
State the conditions of equilibrium for a set of coplanar forces		1
Verify the conditions of equilibrium for a set of coplanar forces		I
		I
		I
		I

	ł
	ı

M7 Circular Motion	Good	Fair	Poor
By the end of this section pupils should be able to:			
Explain what is meant by radians			
Convert radians into degrees and degrees into radians			
Define linear and angular velocity			
Compare and contrast linear and angular velocity			
Derive $v = r \omega$ and use in calculations			
Explain what is meant by centripetal acceleration and centripetal force			
Use a = r ω^2 , a = v ² /r and F = m r ω^2 and F = m v ² /r in calculations			
Synthesise the phenomenon of circular motion in mechanics with other areas of the Physics course, namely: calculating the radius of circular paths of charged particles in magnetic fields			
Demonstrate circular motion in action using simple lab examples and worldly uses, e.g. cars going round a bend, ice-skater pirouetting cyclotron, CRT, planetary orbits, satellites.			
Derive the relationship between the period of a satellites orbit and its radius and use in calculations			
Explain what is meant by geostationary/parked orbits and calculate relevant height for such orbits Specialist questions: ISS orbiting Earth, number of sunrises seen in a day			

M8 Simple harmonic motion (SHM), Hooke's Law	Good	Fair	Poor
By the end of this section pupils should be able to:			
Explain what is meant by elasticity, elastic limit and restoring forces			
Give examples of elastic bodies			
State Hooke's Law			
Use F = -ks in calculations			
Explain what it means for a body to be moving with SHM			
Analyse various motions to determine if they are SHM, e.g. the tides, oscillating pendulum			
Relate the motion of a body obeying Hooke's Law to SHM			
Identify the formula for the period of a body executing SHM as $T = 2\pi/\omega$ and its acceleration as a = $-\omega^2 s$			
Combine the above equations in calculations on SHM and Hooke's Law			
Specialist questions: Tide going in/out, man oscillating on springs of bike			
Investigate the relationship between the period and length of a simple pendulum and hence calculate a value for 'g'			

Heat

H1 Temperature	Good	Fair	Poor
By the end of this section pupils should be able to:			
Explain the concept of temperature			
Compare the SI unit of Temperature, the Kelvin, to degrees Celsius and convert one to the other			
Explain what is meant by thermometric property and give examples			
Demonstrate some examples of thermometric properties in the lab			
Plot the calibration for (i) a liquid in glass thermometer, (ii) a thermocouple, using the mercury thermometer as a standard			
Understand that a thermometer measures temperature			
Evaluate why two different will differ according to their thermometric properties			
Understand the need for practical thermometers			
Conceptualise heat as a form of energy that causes a rise in temperature when added or a fall in temperature when withdrawn			
Define, and give the units of			
- Heat capacity			
- Specific heat capacity			
- Latent heat			
- Specific latent heat of fusion of ice			
- Specific latent heat of vaporisation of water			
Use the equations for the energy transfer in (mc ΔT , and ml) in relevant calculations			
Specialist questions: heat pump, transferring heat from a hot saucepan to a room, hot copper to cold water, phase change material, athlete sweating			
Measure the specific heat capacity of a liquid by electrical method			
Measure the specific latent heat of fusion of ice			i i

Physics Department learning outcomes

Measure the specific latent heat of vaporisation of water		
Explain how a storage heaters and a heat pump works		
Connect the concept of latent heat with the phenomenon of perspiration in humans		
Explain what is meant by conduction, convection, radiation and demonstrate each of these in the lab		
Compare the conductivity of different solids		
Explain what is meant by conductors and insulators of heat		
Define U-Value and Solar constant		
Apply the concepts of U-value and solar constant to insulation in homes and solar heating		

Waves and sound

WS1 properties of waves and wave phenomena	Good	Fair	Poor
By the end of this section pupils should be able to:			
Explain what is meant by a wave and give examples in everyday life			
Differentiate between transverse and longitudinal waves and give examples of each			
Express the relationship between speed, frequency of a wave as $c = f\lambda$			
Understand that something can only be classified as a wave if it exhibits all of the following phenomena: Reflection Refraction Diffraction Interference 			
Explain what is meant by each of the above phenomena and give examples of wave forms exhibiting each			
Demonstrate the above phenomena in the lab using a ripple tank			
Evaluate why only transvers waves can be polarised and give applications of this effect (e.g. stress polarisation, sunglasses)			
⇒ Synthesis the phenomenon of diffraction with the wave nature of light section of the Physics course			
Explain what is meant by the Doppler effect			
Describe this effect using diagrams, in terms of changes in frequency/wavelength when approaching/receding from a stationary observer Specialist concept: Breaking the sound barrier sonic boom,			
Describe everyday applications of the Doppler effect, e.g. red shift in stars, Garda speed traps			
Use the Doppler equations in calculations			

WS2 Vibrations and sound		
By the end of this section pupils should be able to:		
Understand that every source of sound is a vibrating object		
Understand that sound exhibits the 5 wave phenomena		
Demonstrate interference using 2 loudspeakers and a signal generator		
Evaluate the importance of sound interference in the acoustics of theatres, studios, etc. and the impact of noise pollution and the use		
of interference in noise reduction		
Demonstrate using a bell jar, vacuum pump and electric bell that sounds requires a medium to travel		
Explain why the speed of sound changes in various media		
Describe the characteristics of musical notes and demonstrate an understanding of the properties of sound waves on which they		
depend i.e.		
- Loudness (depends on amplitude)		
- Pitch (frequency)		
- Quality (number and types of overtones)		
Define fundamental frequency and natural frequency		
Demonstrate natural frequencies using tuning forks		
Define resonance and describe examples of resonance, e.g. breaking glass, barton's pendulum, Tacoma narrows bridge		
Explain what are meant by stationary waves and harmonics and create each and harmonics using signal generators		
Determine the relationship between frequency and length for stretched strings and pipes open at both ends and closed at one end		
Give examples of musical instruments based on these designs		
Draw diagrams of harmonics on stretched strings and pipes and calculate the number and types of harmonics possible		
Measure the speed of sound in air using the resonance tube method		

Physics Department learning outcomes

Use the equation $f = \frac{1}{2L} \sqrt{\frac{T}{m}}$ in stretched string calculations		
Investigate the variation of the fundamental frequency of a stretched string with length Investigate the variation of the fundamental frequency of a stretched string with tension		
Define sound intensity and give its unit		
Explain what is meant by threshold of hearing and the limits of audibility		
Demonstrate how and why a sound level meter is used and describe the dBA scale		
Understand that doubling sound intensity increases the intensity level by 3dB		
Connect the concept of sound intensity and intensity level with the occurrence of hearing impairment and the use of ear protection in industry		

Optics

Of Boflaction	Good	Fair	Poor
01 Reflection	Good	Fdlf	POOr
By the end of this section pupils should be able to:	 	┟────┤	
State the laws of reflection of light and demonstrate these laws in the lab using a ray box and plane mirror			I
Understand what is meant by lateral inversion in plane mirrors and vertical inversion in curved mirrors and lenses			
Understand what is meant by a real and virtual image			
onderstand what is meant by a rear and virtual image			
Construct ray diagrams for the formation of real and virtual images in a concave and convex mirrors			
Give examples of uses of these types of mirrors			1
Use the mirror formulae of $1/u + 1v = 1/f$ and M = v/u in calculations			
Measure the focal length of a concave mirror			
			ļ
O2 Refraction			
By the end of this section pupils should be able to:			ļ
State the laws of refraction			
Demonstrate the concept of refraction using lab apparatus and give examples of refraction in nature/everyday life			
Explain what is meant by the refractive index of a medium			
Explain what is meant by the reflactive index of a medium			
Use n = sin i/ sin r in calculations, along with n = (speed of light in air) / (speed of light in medium) and			
n = (real depth)/(apparent depth)			1
Specialist questions: Diamonds, thickness of glass block			1
			l
			l
Verify Snell's Law and measure the refractive index of a glass block			l
Measure the refractive index of a liquid by means of real and apparent depth			
			l
State what is meant by critical angle			

	 ,	I	
Connect critical angle with refractive index and the equation $n = 1/(Sin C)$			
Explain what is meant by total internal reflection (TIR) Demonstrate critical angle and TIR in the lab using ray box, glass blocks and prisms			
Describe how light is transmitted along optical fibres using TIR			
Give advantages of optical fibres for information transmission Identify applications of TIR in life, e.g. reflective road signs, mirages, optical fibres in phone lines, Christmas tree lights, endoscopy			
Distinguish between convex (converging) and concave(diverging) lenses			
Construct ray diagrams for the formation of real and virtual images in a concave and convex lenses			
Give examples of uses of these types of lenses			
Use the lens formulae of $1/u + 1v = 1/f$ and M = v/u in calculations			
Measure the focal length of a convex lens			
Explain what is meant by the power of a lens			
Use P = 1/f in calculations and be able to calculate the combined power of 2 lenses using Pt = P1 + P2			
Identify the optical structures and functioning of the eye			
Describe how short and long sightedness occur and state the lens required to remedy each condition			

Wave nature of light

W1 Diffraction and interference	Good	Fair	Poor
By the end of this section pupils should be able to:			-
Outline the basis of Young's double slit experiment and discuss its implications	1		
Demonstrate diffraction and interference in the lab using double slits and a monochromatic light source			
Derive the expression $n\lambda = dSin\theta$ from Young's experiment			
Evaluate why a diffraction grating is more suitable for LC Physics experiments than double slits			
Explain what is meant by grating constant d and be able to calculate grating constants			
Use $n\lambda = dSin\theta$ in appropriate calculations			
Measure the wavelength of monochromatic light by laser method			
Describe everyday examples of light interference patterns, e.g. petrol films, soap bubbles			
Demonstrate light polarisation, thereby identifying light as a transverse wave Explain what is meant by dispersion			
Demonstrate dispersion using a prism and diffraction, and evaluate the differences in spectra			
Understand the phenomenon of dispersion as seen everyday examples such as CD surfaces, rainbows, polished gemstones			
Explain what is meant by primary, secondary and complementary colours and give examples of each			
Understand how combinations of these various colours are used, for example, in stage lighting, television, etc.			
Explain what is meant by the electromagnetic spectrum			
Arrange the various forms of electromagnetic radiation in order of frequency and wavelength			
Describe uses for the various forms of electromagnetic radiation			
Draw a diagram of a spectrometer and label its principle parts			
Demonstrate how to use a spectrometer to measure angles of diffraction, including how to read a vernier scale			

Electricity

E1 Static electricity	Good	Fair	Poor
By the end of this section pupils should be able to:			
Understand the difference between static electricity and current electricity			
Demonstrate electrification by contact by rubbing things together			
Understand the difference between positive and negative charges			
Identify that like charges repel, unlike charges attract and demonstrate this using simple experiments			
Explain what is meant by electrical conductors and insulators and give examples of each			
Identify the unit of electric charge as the coulomb			
Give examples of static electricity phenomena, e.g. TV screen dust, sparks from clothes, flour mill hazards, fuelling aircraft precautions			
Draw and label a diagram of a gold leaf electroscope			
Explain the uses for a gold leaf electroscope			
Demonstrate electrification by contact using an insulated conductors and a nearby charged object			
Explain, with the aid of diagrams, how to charge objects by induction			
Explain how a Van de Graaff generator works.			
Demonstrate, using the Van de Graaff generator, that			
- Total charge resides on the outside of a conductor			
- Charge accumulate at points, (electric wind)			
 Electric charge tries to find the easiest path (hair standing up) 			
- Like charges repel			
Explain, using diagrams, the phenomenon of point discharge			
Describe real world examples of point discharge, e.g. lightning conductor, oil tanker, integrated circuits			
			l
			l
			l
			l
			i

Good	Fair	Poor

E3 Potential difference (pd) and capacitance	Good	Fair	Poor
By the end of this section pupils should be able to:			
Understand that pd and voltage are the same thing			
Define potential difference and give its unit			
Understand that voltage applied to a circuit is called an emf			
Define capacitance and give its unit			
Use C = Q/V in appropriate calculations			
Give examples of uses for capacitors			
⇒ Synthesise the use of capacitors with Cockroft/Walton accelerator in Particle Physics section of the course			
Explain, with the aid of diagrams, why the capacitance of a charged conductor is increased by bringing an oppositely charge conductor or an earthed object near it			
Demonstrate the working of parallel plate capacitor			
Explain why capacitors conduct ac but not dc			
Investigate the factors that affect the capacitance of a parallel plate capacitor $C=rac{\epsilon A}{d}$ and W = (1/2) CV ² in calculations			
Specialist questions: defibrillator, keyboard button			
E4 Current electricity	Good	Fair	Poor
By the end of this section pupils should be able to:			
Describe electric current as a flow of electric charge and state its unit			
Understand that circuits must be complete in order for current to flow			
Understand that electric current starts to flow at all points in an electric circuit at the same time when turned on			
Understand the difference between conventional current and the actual flow of charges in a circuit			
Understand that $1A = 1Cs^{-1}$			
Distinguish between ac and dc			
Explain the difference between primary and secondary cells and give examples of sources of each			
Identify and draw circuit symbols for			
- the instruments used to measure V, I and R			i –

- the various electric components in a circuit	
Understand that pd is the amount of energy converted from electrical to other forms between 2 points when 1C of charge passes any point of that circuit	
Understand that in series total voltage = V1 + V2 + V3	
Understand that in parallel voltages are equal	
Use V = W/QW and I = Q/t in appropriate calculations	
Understand that electrical resistance is anything which opposes the flow of current	
Define resistance as R = V/I and give its unit	
Give examples of practical uses of resistors, including variable resistors	
State Ohm's Law	
Investigate the variation of current with pd through the following:	
- Metallic conductor	
- <u>Filament bulb</u>	
 <u>Copper sulphate solution with copper electrodes</u> 	
- <u>Semiconductor diode</u>	
Know that in series, total R = R1 + R2 + R3	
Know that in parallel, total R is given as 1/R = 1/R1 + 1/R2 + 1/R3	
Derive the expression for the effective resistance of resistors in series and parallel	
Use V = IR, voltage in series/parallel and resistance in series/parallel equations in circuit calculations ('big circuit' questions)	
Identify the factors that affect the resistance of a conductor	
Investigate the variation of the resistance of	
- A metallic conductor	
- A thermistor	
With temperature	

Define resistivity			
Measure the resistivity of the material of a wire			
RA			
$\rho = \frac{RA}{L}$ in appropriate calculations			
Draw a diagram of a wheatstone bridge and explain its operation			
Use the wheatstone bridge formula in appropriate calculations			
Understand the metre bridge as special case of the wheatstone bridge			
Explain practical uses of a wheatstone bridge			
Explain what is meant by a potential divider circuit			
E5 Effects of electric current and domestic circuits	Good	Fair	Poor
By the end of this section pupils should be able to:			
Understand that electric current has a heating, magnetic and chemical effect and give examples of how each are demonstrated			
Use W = I^2Rt , P = VI and P = I^2R in appropriate calculations			
Specialist questions: Hairdryer circuit, kettle			
⇒ Synthesis the concept of electric power with % efficiency and heat from other sections from the Physics course			
Verify Joule's Law			
Outline the advantages of using EHT voltage in the transmission of electrical energy			
Explain what is meant by an ion			
Identify the charge carriers in and the relationship between I and V for a			
- Metallic conductor			
- Filament bulb			
- Semiconductor			
- Ionic solutions with active and inactive electrodes			
- Gas			
- Vacuum			
		1	I

and draw IV graphs for each of these components			
Understand what is meant by a ring main circuit			
Explain what is meant by a fuse and calculate the appropriate fuse size for various electrical appliances			
Understand why appliances that take a large current (cooker, fridge) have their own fuses			
Outline the purpose of MCBs, RCDs and earthing in domestic electricity			
Identify the colour and purpose of the three wires in a 3-pin plug and explain what is meant by doubled bonded/insulated in			
appliances that have a 2-pin plug			
Explain how the earth wire works in the case of an electrical fault			l
State what is meant by a kilowatt-hour and calculate the number of kilowatt-hours used by different electrical appliances			
E6 Semiconductors	Good	Fair	Poor
By the end of this section pupils should be able to:			
Understand what is meant by a semiconductor			
Explain what is meant by valency and explain in terms of p-type and n-type crystal			
Understand the concept of the 'positive hole' as a charge carrier			
Explain what is meant by intrinsic conduction			
Describe ways in which the intrinsic conduction of a semiconductor can be increased/decreased and demonstratre applications of			
these methods (thermistor, LDR)			
Explain what is meant by extrinsic conduction and apply this concept in the formation of a p-n junction diode			
Explain what is meant by a depletion layer in a p-n diode			
Understand what is meant by connecting a diode in forward and reverse bas			
Describe, with the aid of diagrams, the effect on the size of the depletion layer in connecting a diode in forward and reverse bias			
Outline uses of diodes in rectifying ac and in ICs			

E7 Electromagnetism	Good	Fair	Poor
By the end of this section pupils should be able to:			
Demonstrate the main properties of bar magnets in the lab			
Understand that magnetic poles exist in pairs			
Understand that electricity has a magnetic effect			
Understand the vector nature of a magnetic field			
Explain what is meant by magnetic fields and magnetic field lines			
Plot the magnetic field of a bar magnet			
Show the magnetic effect of an electric current			
Plot the magnetic field due to the current in a long straight wire			
Apply the right hand grip rule in deducing the direction of magnetic field in a long straight wire, a circular loop and a solenoic			
Demonstrate the use of an electromagnet and give real world examples of this device			
Understand the concept of the Earth's magnetic field with poles opposite to the geographic poles			
Outline the importance of counting for magnetic declination in ship navigation			
Demonstrate that a current-carrying conductor in a magnetic field experiences a force			
Give applications of this effect (motors, meters, loudspeakers)			
Use Fleming's left hand rule to deduce the directions of current, field and force			
Apply Fleming's left hand rule In describing the motion of a coil in a magnetic field			
Define magnetic flux density and state its unit			
Define the unit of magnetic flux densit, the Tesla			
Understand the factors upon which the size of the force on a current-carrying conductor in a magnetic field depend			
Use F = BII in appropriate calculations on forces in current-carrying wires perpendicular to a magnetic field			
Use $F = BILSin\theta$ in appropriate calculations on forces in current-carrying wires cutting magnetic fields at angles less than 90 degrees			
Synthesise F = BII for coils of wire with calculation of moments/couples from mechanics section of Physics course			
Understand that a charged particle entering a magnetic field moves in a circle			
Derive F = qvB and use in appropriate calculations			
Synthesise calculations on F = qvB with centripetal force and particles accelerate in cyclotron from the mechanics and			

particle physics sections of the course		
Demonstrate the magnetic force between two current carrying conductors		
Define the ampere and the Coulomb		
Understand the concept of electromagnetic (EM) induction		
Demonstrate EM induction in the lab		
Apply the phenomenon of EM induction in the functioning of an electrical generator, dynamo		
Define magnetic flux and use ϕ = BA in appropriate calculations for coils/wires cutting magnetic fields at right angles		
Use ϕ = BASin θ for coils/wires cutting magnetic fields at angles less than 90 degrees		
State Faraday's Law of EM induction		
Use Faraday's Law in appropriate calculations		
Specialist questions: Coils moving at certain velocities/rotating into magnetic fields, calculating current and resistance values from		
induced emfs		
State Lenz's Law and demonstrate in the lab		
Describe applications of Lenz's Law (Arago's disc, induction motor)		
Describe applications of Lenz's Law (Arago's disc, induction motor)		
Explain what is meant by rms and peak values of ac in the context of the heating effect an electric current		
Use rms and peak values in calculations on voltage, current and power		
Explain the concepts of mutual and self-induction		
Outline self-induction in the lighting of a neon lamp		
Describe applications of self-induction (induction coil, stage lighting dimmers)		
Understand that coils oppose dc due to ohmic resistance and ac due to ohmic resistance and back emf		
Understand what a transformer is and discuss its uses		
Explain the structure and principle operation of a transformer		
Use the transformer equation in appropriate calculations		

Modern Physics

MP1 The electron	Good	Fair	Poor
By the end of this section pupils should be able to:			
Categorise the electron as an indivisible unit of negative charge, of extremely small mass orbiting the nuclei of atoms			
State who named the electron and who discovered it was negatively charged			
Understand the principle of thermionic emission and its application to the producing of a beam of electrons			
Summarise the workings of a cathode ray tube (CRT) and the properties of cathode rays			
Outline the deflection of cathode rays in electric and magnetic fields Describe uses for CRTs			
Establish that the energy of the photon produced on the screen of the CRT and X-Ray machine depends on the kinetic energy (KE) of the electron which in turns depends on the voltage between anode and cathode, thereby formulating the relationship that $eV = \frac{1}{2} mv^2 = hf$			
Differentiate between the electron volt (eV) and the Joule as units of energy and convert from one to the other			
Explain what is meant by the photoelectric effect (PE) and demonstrate this effect			
Describe the structure and demonstrate the action of a photocell			
Discuss applications of photoelectric sensing devices			
Explain the effect of the intensity and frequency of incident light in liberating electrons from metal plates Appreciate the strides taken throughout to try and explain the PE			
Understand the concepts of threshold frequency and work function			
Articulate an explanation for the PE using Einstein's theory, thereby arriving at this expression E = θ + KE			
Use Einstein's PE expression in appropriate calculations			
State who discovered X-Rays			
Outline, with the aid of diagrams, the principles and operation of an X-Ray machine			
Summarise the properties of X-rays			
Evaluate why X-ray production is the invers of the PE			
Use eV = ½ mv ² = hf in appropriate calculations on voltages/speeds of electrons/frequencies of x-rays produced in an X-ray tube			

MP2 The Nucleus	Good	Fair	Poor
By the end of this section pupils should be able to:			
Understand the nature of atoms as having a nucleus containing protons and neutrons with electrons orbiting in clouds			
Summarise Rutherford's experiment in determining the nature of the atom			
Explain what emission line spectra are			
Apply the principles of line spectra in atoms to describing Bohr's discovery of electron energy levels			
Connect the concept of raised energy levels in electrons with the technology behind a laser			
Describe uses of spectroscopy as a tool in Science, e.g. deducing that the Sun is surrounded by He gas			
Differentiate between the atomic and mass numbers of an atom and use each to calculate number of protons and neutrons in atoms			
Explain what isotopes are and give common examples			
Appreciate that Becquerel discovered radioactivity			
Understand the concept of an unstable nucleus ('suitcase'model)			
Define radioactivity			
Understand what is meant by transmutation of an element			
Construct an equation for the 1 st ever artificial transmutation of an element by Rutherford and proof that nuclei contain protons			
Summarise the properties of the three types of radiation			
Outline an experiment to demonstrate the			
- penetrating power			
- ionising ability			
of the three types of radiation			
Apply the concept of changes in mass and atomic numbers due to emission of alpha and beta particles in the completion of equations			
of nuclear reactions			
Explain what is meant by the activity of a radioactive nucleus and state the unit of activity			
State the Law of radioactive decay			
Understand the concept of half-life and apply to calculating fractions of radioactive samples decayed/undecayed over time $(1/2^n)$ Use the T ½ = In2/ λ , A = - λ N in appropriate calculations			
Connect the concept of atomic mass with the unified atomic mass unit (u)			

Apply the concepts of the mole and Avagadro's constant to calculating number of atoms in a given mass of a radioactive sample		
Identify uses of radioisotopes		
Outline the principle of operation of a Geiger-Muller tube and a solid state detector		
Explain what is meant by nuclear fission and nuclear fusion		
Understand the principle of a fission chain reaction and uses of an uncontrolled (fission bomb) and controlled (nuclear power) chain reaction		
Illustrate the functioning of the various parts of a fission reactor		
Outline the advantages and disadvantages of nuclear power		
Evaluate the potential of creating fusion power reactors		
Understand fusion as the source of the Sun's energy		
Discuss the uses and health hazards of ionising radiations		
Specialist cases: Radon, medical imaging, Chernobyl, Hiroshima/Nagasaki, disposal of nuclear waste		
Understand Einstein's mass-energy equivalence E=mc ² and use in appropriate calculations		

MP3 Particle Physics	Good	Fair	Poor
By the end of this section pupils should be able to:			
Understand that momentum, mass-energy and nuclear charge are conserved in nuclear reactions			
Complete appropriate calculations and equations relating to conservation in nuclear reactions Specialist questions: Beta decay			
Discuss the concept of the neutrino as an explanation for momentum not being conserved in beta decay			
Appreciate the historical significance of Ernest Walton as a local scientist and Ireland's only Nobel Physics laureate Summarise the principle of the Cockroft Walton accelerator and write the equation for the 1 st artificial transmutation of an element using artificially accelerated particles Complete appropriate calculations relating to Cockroft and Walton's experiment			
Understand that energy in particle collisions can be converted into matter Explain what antimatter is Evaluate the nature of antiparticles Assess the 'Big Bang' theory as an explanation for the origin of the universe based on the conversion of energy into matter Outline the conditions required for pair production Explain the concept of pair annihilation Complete appropriate calculations related to pair production and annihilation			
Specialist question: electron/positron formation Understand that CERN is the centre for particle acceleration in Geneva and conducts/analyses particle collisions in 2 circular accelerators Examine the advantages of circular accelerators over linear accelerators Explain the concept of the 'particle zoo'C			
Appreciate the origins of the fundamental forces and building blocks of nature throughout history Name and describe the characteristics of the 4 fundamental forces of nature Classify particles into their various 'families' based on size and forces felt Understand the concept of the 'Quark Model' and identify the 6 'flavours' of quarks Deduce the quark composition and overall charge of a particle			

Physics Department learning outcomes