

Manual Overview

The purpose of this manual to provide Phase One Leaving Certificate Computer Science

(LCCS) teachers with the knowledge, skills and confidence to independently design and

develop websites and web applications.

Although the manual will serve as support material for teachers who attend the Web

Application Development Workshop component of our two-year CPD programme, it is

envisaged that its real value will only become evident in the months after the workshops

have been delivered. Beyond these workshops, the manual may be used as a basic

reference for web development, but more importantly, as a teaching resource that might be

used to facilitate teachers in employing a constructivist pedagogic orientation towards the

planning for teaching and learning of web development in the LCCS classroom.

The manual itself is divided into five separate sections and is split into three separate

documents – Part A, Part B and Part C – organised as shown below. This is Part C.

Part A

Section 1 – HTML

Section 2 – Cascading Style Sheets

Section 3 – UX Design

Part B

Section 4 – JavaScript

Part C

Section 5 – Databases

Web Development Skills – Part C - Databases

3

Section 5

Databases

Web Development Skills – Part C - Databases

4

Introduction to Databases

 History and Future of databases

 Data v Information / Big data / Database and DBMS

 Information Systems (Activity: Ireland Hockey team / School MS)

 Single table database – row, column, data types, primary key

 Creating Tables, Queries, Forms, Reports in OpenOffice Base

 Relational databases – relationships

 Examples / Exercises: Class Library, Tennis Club

Introduction to Structured Query Language

 Syntax and Semantics

 Creating database from command line in MySQL, Sqlite

 Insert, Select, Update and Delete data

 Examples / Exercises: ‘Hodson Bay’ / Tennis club / Class Library

Using Web Technologies with Databases

 Uploading to web server and accessing

 Creating webpage linking to Base db

 Using an interactive web front end with html and JavaScript

 Examples / Exercises: Class library / Wedding Presents.

Web Development Skills – Part C - Databases

5

Databases and Information

It’s only a short space of time since a database, possibly just a stand-alone single table or

relational database was just to store data and to retrieve, query and manipulate data into

useful information. This may have been the norm for a school, a doctor’s or dentist’s practice

or a small busines. With the advance of the web and of storage capabilities, the centrality of

the database has diminished, and Information Systems have become more advanced and

more integrated. These advances have ensured that raw unstructured data can be used

and are being used as the source.

When students are asked what are Information Systems, they often answer with short

answers such as “computers”, “Excel” or “databases”. But Information Systems in some of

the contexts above have changed.

An Information System is software that can organise and analyse data. Consider the

systems in schools and colleges which have information about:

 Teachers’ and Students’ Timetables

 Teachers’ class groups

 Students’ academic record

 Facility for Teachers to enter data on Students’ performance and behaviour

 Bookings for labs, libraries, computer rooms

Behind the one front end there are multiple files some of which are databases.

Web Development Skills – Part C - Databases

6

Fig 1: General Information Systems with a Database:

With the advance of Information Systems, the role of the database has changed. The

advance of big data means a huge amount of data can be analysed and mined from ‘flat

files’.

But what makes something a database? It’s something that contains data which has a

structure so that the data are organised and can be managed, accessed and updated.

We’ll consider several different types of stand-alone databases, and how to perform the

actions mentioned above, on them.

Firstly, however, let’s take a look at the bigger picture. Consider an example of a large

organisation where data and information flow to and from management through various

channels and to and from various entities. The information then helps management in

decision-making, administration, planning, leading and improving.

Web Development Skills – Part C - Databases

7

Example 1: Irish Women’s Hockey Team – Management Information System:

The Ireland team was very successful at last year’s World Cup. Consider the Information

required and used by the team management. Everything involved with the players, coaches,

other staff, other teams, travel and expenses, dealing with the hockey federation etc.

Fig 2: Diagram showing flow of data and Information to and from Irish Hockey team

management:

Web Development Skills – Part C - Databases

8

Exercise 1: School Management System

Now try do so something for a management system for your school placing the management

team of principal and deputy principal at the centre.

Diagram:

It is also useful to define a database management system (DBMS). DBMS is the software

which creates and manages databases in a systematic way.

DBMSs should display ACID properties (Atomicity, Consistency, Isolation, Durability) and

can be categorised into:

 Relational Database Management Systems (RDBMS) such as

o Oracle Database

o MySQL

o PostgresSQL

o MS_SQL

o Sqlite

o MS Access

o IBM DB

o MS SQLServer

 Document Store (aka No SQL) – Non-relational, schemaless databases:

o MongoDB

o CouchDB

o MarkLogic

o DocumentDB

o ZODB

Web Development Skills – Part C - Databases

9

 Graph databases: Interconnected records of the same or similar type. For example,

answering the question “Who are the friends of my friends?” in Social Networks:

o Neo4J

o ArangoDB

o OrientDB

o GraphDB

 Column Store – organised by columns rather that rows:

o Apache HBase

o PostgresSQL

o MariaDB column store

 Key Value Store – databases store data indexed by a unique key:

o Redis

o BerkleyDB

o Riak

Relational Databases with tables and relationships between them were often the choice of

schools, small companies and organisations, as they featured build-in queries, forms, report

writing capability and macros and modules for more advanced users. They started with EF

Codd of IBM, based on the principles:

 No duplicate data

 Information broken down into categories

 Data broken down into the smallest useable bit: eg ‘Name’ could be broken down into

‘Title’, ‘FirstName’, ‘MiddleName’, ‘Surname’.

Web Development Skills – Part C - Databases

10

Fig 3: Features of RDBMS:

We’ll now look, through examples, and exercises, at the process of designing and using

databases, to include. The first examples / exercises use OpenOffice’s Base application

(downloadable at www.openoffice.org):

 Planning a database

 Creating a new database

o Creating table(s) using design view / Wizard

o Adding Data

o Creating Database form(s)

o Querying tables

o Creating Reports

o Accessing spreadsheets

o Creating relationships where more than one table is used.

Web Development Skills – Part C - Databases

11

Example 2: Designing a database system for a Class Library

In this first example, we will design a system with one table for a class library. As it only has

one table, the first step is to decide on the fields.

I’m presuming each student will be able to take out 2 books at a time for two weeks, so the

name of the books and the book number will be required.

In addition, there will obviously have to be details about the members, such as name, email

address, and member number. As mentioned before, name can be broken down into first

and surname.

So we’ll have (Fig 4):

From the three options, “Create Table in Desisgn View” was chosen to give (Fig 5):

Web Development Skills – Part C - Databases

12

I decided on the 10 fields, and chose the appropriate field type – eg a text field with variable

number of characters for Surname, and a boolean yes / no for MemPaid, to record if the

students paid an initial small sign-up fee for the service. You’ll notice a field ‘Book1_No’ in

addition to ‘Book1’ to allow for having, say, three copies of ‘Treasure Island’.

Also note the highlighted field MemNo, which has been chosen as the Primary Key, and

each member will have a unique and distinct membership no. The Primary key is also

essential in linking tables.

The next step is to enter some data into the table (Fig 6):

As you can see here, the Primary key distinguishes Member No.107 from Member No.105,

although both are called Jim McCloy.

Web Development Skills – Part C - Databases

13

We can now create a form using Form Wizard (Fig 7):

This screen shot shows the fields you can select for your form.

Web Development Skills – Part C - Databases

14

I chose FirstName, Surname, MemNo, Email and MemPaid to produce the final form (Fig 8):

The form is used to add records to out table. Be careful that the fields you choose can be

null, or you’ll get an error message.

Queries are used to access some of the data from a database and are a very important

aspect of database functionality. Suppose we wanted to have a list of those who haven’t

paid in order that we can send them an email reminder (Fig 9):

Web Development Skills – Part C - Databases

15

The chosen fields are there and the Criterion for the Mem Paid field is “=0”, to show that the

value is this Field is “No”, as in “not paid”. The results of the query are here (Fig 10):

This shows, as expected, that Paul (104) and George (106) have not paid.

We may want to produce a Report of some of the data. Suppose we just wanted the first

name, surname and membership number for each member. This time I used the Wizard to

select the required fields (Fig 11):

Web Development Skills – Part C - Databases

16

This produced the following report (Fig 12):

Now let’s add in data for some book borrowings (Fig 13):

Web Development Skills – Part C - Databases

17

And if we want to find out the names of students who had books taken out we could run the

following query (Fig 14):

The query would produce these results (Fig 15):

Web Development Skills – Part C - Databases

18

Exercise 2: Try some more data entry and queries:

1. Add three more records to the table, using forms.

2. Include some borrowings for these new records.

3. Design a query which gives the first and last name of those who have no books out.

4. Design a query which gives the the first name, surname and the names of the books

for those who have taken out two books.

Example 3: Extending the Class library to include multiple tables wth links

between them.

The term ‘Relational databases’, as was mentioned above, implies that there is a

relationship between tables. If we only use one table, we are in danger of having too many

fields. The resulting table can look unwieldy and may be difficult to manipulate:

Fig 16a: Database table with 21 fields:

This table has actually has 21 fields, but only 9 are visible on one screen – to view the others

we need to scroll across.

A better solution is to create several tables with links between them. The tables could be

created according to function: for example a company may nave a table for sales details,

personnel, purchase details, stock, customer details etc.

Consider our fields in the Members_Borrowings table: some of the fields only change rarely,

if at all, These are fairly static fields, whereas the ones which change fairly frequently are

dynamic:

Fig 16b: Members_Borrowings table – Categorising Fields

Personal Details

(quite static!)

FirstName Surname Mem_No Email

Borrowings

(fairly dynamic!)

Book1 Book1_No Due Date Book2

Web Development Skills – Part C - Databases

19

We could alter our Class Library design by including two rather than one table. Here I called

the firet table ‘Member Details and the second one ‘Borrowing’ and the fields are split

between the two as in Fig 3. Note that splitting the data into two tables makes the solution

more efficient. Consider if more fields were added to a Tennis Club database, the data may

require scrolling across several screen widths just to see one record.

The relationship between the two fields was made at Mem_No id the primary key of Member

Details and a foreign key in Borrowing (Fig 17):

Web Development Skills – Part C - Databases

20

The two tables actually look line this (Fig 18):

And (Fig 19):

Web Development Skills – Part C - Databases

21

A query was run using the two tables on details of those who had a book out, and whether

they paid their membership fees or not. The query design was like this (Fig 20):

And it produced results (Fig 21):

Web Development Skills – Part C - Databases

22

Exercise 3: Adding Data and Running Data on the Relational Database

ClassLibrary2:

1. Add four more records to Member_Details by direct entry.

2. Insert data for borrowings into the Borrowing table.

3. Design a query which gives the First Name, Surname, Membership No of those who

have taken out a book.

Web Development Skills – Part C - Databases

23

Exercise 4 : Try creating a one-table or multi-table databse for the school

Tennis Club:

There are some examples below of producing a database for a tennis club. Steps

which should be taken are:

1. Planning – brainstorm which fields are required for a one-table solution.

2. Add the fields to the table in OpenOffice Base.

3. Create some records using forms and entering data directly to the table.

4. Query the tables using different criteria.

5. Attempt a second (multi-table) solution. Consider that the members will

have to book courts every week.

6. Establish relationships in your relational database.

1. Planning – brainstorm which fields are required for a one-table solution.

2. Add the fields to the table in OpenOffice Base.

Web Development Skills – Part C - Databases

24

3. Create some records using forms and entering data directly to the table.

4. Query the tables using different criteria.

5. Attempt a second (multi-table) solution. Consider that the members will

have to book courts every week.

6. Establish relationships in your relational database.

Web Development Skills – Part C - Databases

25

Example 4: The screenshots below are for reference only and provide part of

one solution (Fig 22 a, b, c, d, e):

Table:

Relationships (Primary key, foreign Key) :

Queries:

Web Development Skills – Part C - Databases

26

Forms:

Reports:

Web Development Skills – Part C - Databases

27

SQL Structured Query Language:

SQL is the language of creating databases and their tables; inserting data; querying

databases to extract useful information and deleting data and tables.

Some of the DBMSs we will look at use command line, as in sqlite below. MySQL is also

used in some of the examples. Others are integrated into web applications.

Fig 23: Command line Sqlite code:

Note:

 The syntax, for example commands end with a semi-colon(;),

 The amount of errors associated with command line slips,

 SQL commands are not case-sensitive.

We’ll now show some of the common and most important SQL statements in a MySQL

database.

These include the basic functions which make up the acronym CRUD (Create, Read,

Update, Delete). The CRUD functions are those required for persistent data storage.

Web Development Skills – Part C - Databases

28

Example 4: Using MySQL to create databases and tables, read information

(Show and Select), update and delete tables.

Fig 24: Creating a database in MySQL using the command:

 create database database name;

Here the database hodsonbay2 is created and the creation was verified using the command

“Show databases;” as you can see

Fig 25: Create a table using the command:

 create table tablename(Column1 Type, Column2 Type…);

Web Development Skills – Part C - Databases

29

As can be seen in Fig the command “use hodsonbay2;” was used to put the focus on this

database. We then made sure that there were no tables there using the “show tables;”

command.

The table lunchpreferences was created which has Columns (Fields) named “id” , “FName”,

“LName”. The “id” field’s type is integer (int) and the other two are character fields.

At this point it is realised that the lunchpreferences filed doesn’t actually have a preference.

So this is rectified in Fig using the command:

alter table table_name add column column_name column_type after

existing_column;

Fig 26: Adding a Column:

Note the errors that occurred on verifying that the column had been added. One was due to

not naming the table and the other was a misspelling. With the correct syntax, the columns

are there as we required.

Web Development Skills – Part C - Databases

30

We now enter some data using the “Insert” command:

insert into table_name(column1…) values(value1…);

Fig 27 : Entering data:

You will notice that the id values are the same for the different people mentioned, and this

can be corrected using the Update command (Fig 28):

 update tablename set column1 = value1 where column2 = value2

So here the unique identifier, id, has been changed for Tina, Joe and Jane.

Web Development Skills – Part C - Databases

31

Exercise 5: Adding records and verifying

1. Add three more records to the lunchpreferences table.

2. Verify the changes have been made using the command:

Example 4: Querying a table:

As mentioned before, one of the most powerful features of databases is the ability to query.

By querying you can get just the records you want with just the fields you want. The next

few screenshots show some different queries – one in which you only want certain fields and

the other in which you are only interested in records which fulfil certain criteria.

Fig 29a: Show tables in MySQL

Web Development Skills – Part C - Databases

32

Fig 29b, c: Select statements:

Exercise 6: Running queries:

1. Run a query on the lunchpreferences table which shows only the people who would

like the vegetarian option.

2. Run a query which shows the id and first name only for those whose id is greater

than 102.

3. Using the Select Count(*) from lunchupdates, find the number of people who would

like the vegetarian option (hint: “where pref = ‘veg’).

Web Development Skills – Part C - Databases

33

Example 5: Deleting database

If we look at our databases, we notice one called hodsonbay, in addition to the one we were

using, hodsonbay2 (Fig 30):

The hodsonbay database was actually set up in error and can be deleted using the

command (Fig 31):

 Drop database database_name;

The command executed as required as can be seen from the second drop databases

command.

Web Development Skills – Part C - Databases

34

Exercise 7: Use the syntax (MySQL command line syntax above and

www.w3schools.com/sql) to carry out the CRUD functions.

1. Create a database (Tennis Club / Class Library example above)

2. Create and populate a table (Tennis club / Class Library members)

3. Insert records

4. Use SQL Select; Where;

5. And, Or, Not

6. SQL Update

7. SQL Delete

8. SQL Min, Max

9. SQL Count, Avg, Sum.

Web Development Skills – Part C - Databases

35

Databases: Using Web Technologies

Solution 1: Uploading to Web Server and Accessing

Solution 2: Creating a web page in Base to link to database

Solution 3: Using an interactive web front-end to manipulate a database

These three get progressively more sophisticated, as can be seen if you imagine a solution

for a ‘Wedding Present List’.

1. Uploading to Web Server and Accessing db:

See the webpage (Fig 32) at https://denartha.weebly.com/cs

Fig 32:

A user can download one of the databases to their own machine, but would need admin

rights to upload the updated version. In the ‘Wedding List’ database, this would be inefficient

as guests could not update the database with their chosen gift.

https://denartha.weebly.com/cs

Web Development Skills – Part C - Databases

36

2. Creating a Web page in Base to link to Database:

Here we use the Wizard in Base (Fig 33):

(File -> Wizards -> Web page)

The Wizard creates a web page which can be edited with html (Fig 34):

Here the user would need to access the local machine to view or alter the website.

Web Development Skills – Part C - Databases

37

3. Using an interactive web front-end to manipulate a database (Fig 35):

Using HTML / JavaScript / SQL an interactive solution can be created, whose front-

end may look like this (Fig 36):

Web Development Skills – Part C - Databases

38

Here is some command line input (INSERT and SELECT statements) in Sqlite

(Fig 37):

Exercise 7: Database with HTML front-end:

1. Enter some records through the web page in Solution 3.

2. Enter more records through the Console.

3. Query the database through the Console.

4. Query the database through the web page.

5. Discuss the advantages of Solution 3 over the other two.

***We will build on the knowledge and skills gained by completing these exercises to

develop a full-stack web application in our final break-out session ***

Web Development Skills – Part C - Databases

39

Appendices

1. Databases: Websites / Books Consulted:

 Dr Mikes: http://www.dr-mikes-maths.com/database-glossary.html

 OpenOffice ‘Getting Started Guide’:

https//www.openoffice.org/documentation/manuals/userguide3

 ‘Computer Science 5th Ed’, CS French, Letts, Ch 3

 ’A-Level Computer Science for AQA Unit 2, Kevin R Bond, Education

Computing Service, Ch 10.1 – 10.5

 Database-driven website:

https://www.quackit.com/database/tutorial/database_driven_website.cfm

 On-line web-database management tool: http://www.glitch.com

2. SQL: Websites / Books Consulted:

 CodeAcademy: https://www.codecademy.com/articles/sql-commands

 W3 Schools: https://www.w3schools.com/sql/

 Wikipedia: https://en.wikipedia.org/wiki/SQL

 dofactory: https://www.dofactory.com/sql/tutorial

 Tutorials Point: https://www.tutorialspoint.com/sql/

http://www.dr-mikes-maths.com/database-glossary.html
https://www.quackit.com/database/tutorial/database_driven_website.cfm
http://www.glitch.com/
https://www.codecademy.com/articles/sql-commands
https://www.w3schools.com/sql/
https://en.wikipedia.org/wiki/SQL
https://www.dofactory.com/sql/tutorial
https://www.tutorialspoint.com/sql/

Web Development Skills – Part C - Databases

40

3. Glossary of database terms (Adapted from Livewire.com):

ACID

The ACID model of database design enforces data integrity through:

 Atomicity: Each database transaction must follow an all-or-nothing rule, meaning that if any

part of the transaction fails, the entire transaction fails.

 Consistency: Each database transaction must follow all the database's defined rules; any

transaction that would violate these rules is not allowed.

 Isolation: Each database transaction will occur independently of any other transaction. For

example, if multiple transactions are submitted concurrently, the database will prevent any

interference between them.

 Durability: Each database transaction will permanently exist in any database failure, via

backups or other means.

Attribute

A database attribute is a characteristic of a database entity. Simply put, an attribute is a column in a

database table, which itself is known as an entity.

Authentication

Databases use authentication to ensure that only authorized users can access the database or certain

aspects of the database. For example, administrators might be authorized to insert or edit data, while

regular employees might be able to only view data. Authentication is implemented with usernames

and passwords.

BASE Model

The BASE model has been developed as an alternative to the ACID model to serve the needs of

(mainly) noSQL databases in which the data is not structured in the same way as RDB required by

relational databases. Its primary tenets are:

 Basic Availability: The database is available and operational, backed sometimes by data

replication distributed across several servers.

 Soft State: Countering the ACID model of strict consistency, this tenet states that data does

not always have to be consistent and that any enforced consistency is the responsibility of the

individual database or developer.

 Eventual Consistency: At some undefined future point, the database will achieve

consistency.

https://www.lifewire.com/creating-sql-server-2012-user-accounts-1019793
https://www.lifewire.com/abandoning-acid-in-favor-of-base-1019674

Web Development Skills – Part C - Databases

41

Constraints

A database constraint is a set of rules that define valid data. Multiple types of constraints exist. The

primary constraints are:

 Unique constraints: A field must contain a unique value in the table.

 CHECK constraints: A field can contain only specific data types and even certain allowable

values.

 DEFAULT constraints: A field will contain a default value if it has no existing value; this

eliminates a NULL value.

 PRIMARY KEY Constraints: The primary key must be unique.

 FOREIGN KEY Constraints: The foreign key must match an existing primary key in

another table.

Database Management System(DBMS)

DBMS is the software that manages all aspects of working with a database, from storing and securing

the data to enforcing data integrity rules, to providing forms for data entry and manipulation. A

Relational Database Management System (RDBMS) implements the relational model of tables and

relationships between them.

Entity

An entity is simply a table in a database. It is described using an Entity-Relationship Diagram, which

is a type of graphic that shows the relationships between database tables.

Functional Dependency

A functional dependency constraint helps to ensure data validity, and exists when one attribute

determines the value of another, described as A -> B which means that the value of A determines the

value of B, or that B is "functionally dependent" on A. For example, a table in a university that

includes records of all students might have a functional dependency between the student ID and the

student name, i.e. the unique student ID will determine the value of the name.

Index

An index is a data structure that helps speed database queries for large datasets. Database developers

create an index on particular columns in a table. The index holds the column values but just pointers

to the data in the rest of the table and can be searched efficiently and quickly.

Key

A key is a database field whose purpose is to uniquely identify a record. Keys help enforce data

integrity and avoid duplication. The main types of keys used in a database are:

 Candidate keys: The set of columns that can each uniquely identify a record and from which

the primary key is chosen.

 Primary keys: The key chosen to uniquely identify a record in a table. This key cannot be

NULL.

 Foreign keys: The key linking a record to a record in another table. A table's foreign key

must exist as the primary key of another table.

https://www.lifewire.com/not-null-constraints-1019824
https://www.lifewire.com/database-management-system-1019609
https://www.lifewire.com/entity-relationship-diagram-1019253
https://www.lifewire.com/functional-dependency-definition-1019257

Web Development Skills – Part C - Databases

42

Normalization

To normalize a database is to design its tables (relations) and columns (attributes) in a way to ensure

data integrity and to avoid duplication. The primary levels of normalization are First Normal Form

(1NF), Second Normal Form (2NF), Third Normal Form (3NF), and Boyce-Codd Normal Form

(BCNF).

NoSQL

NoSQL is a database model developed to respond to the need for storing unstructured data such as

emails, social media posts, video, or images. Rather than using SQL and the strict ACID model to

ensure data integrity, NoSQL follows the less-strict BASE model. A NoSQL database schema does

not use tables to store data; rather, it might use a key/value design or graphs.

Null

The value NULL is frequently confused to mean "none" or zero; however, it actually means

"unknown." If a field has a value of NULL, it is a placeholder for an unknown value. Structured

Query Language (SQL) uses the IsNull and IsNot Null tests.

Query

A database query is how users interact with a database. It is usually written in SQL and can be either

a select query or an action query. A select query requests data from a database; an action query

changes, updates, or adds data. Some databases provide forms that hide the semantics of the query,

allowing users to easily request information without having to understand SQL.

Schema

A database schema is the design of tables, columns, relations, and constraints that make up a database.

Schemas are usually described using the SQL CREATE statement.

Stored Procedure

A stored procedure is a pre-compiled query or SQL statement that is used in a RDBMS.

Structured Query Language

Structured Query Language, or SQL, is the most commonly used language to access data from a

database. The Data Manipulation Language (DML) contains the subset of SQL commands used most

frequently and includes SELECT, INSERT, UPDATE and DELETE.

Trigger

A trigger is a stored procedure set to execute given a particular event, usually a change to a table's

data. For example, a trigger might be designed to write to a log, gather statistics, or compute a value.

View

A database view is a filtered set of data displayed to the end user in order to hide data complexity and

streamline the user experience. A view can join data from two or more tables and contains a subset of

information.

https://www.lifewire.com/database-normalization-basics-1019735
https://www.lifewire.com/relation-definition-1019260
https://www.lifewire.com/nosql-an-overview-of-nosql-databases-2495393
https://www.lifewire.com/all-about-null-values-1019266
https://www.lifewire.com/query-definition-1019180
https://www.lifewire.com/definition-of-a-schema-in-a-database-1019262
https://www.lifewire.com/sql-server-stored-procedures-1019838
https://www.lifewire.com/what-is-sql-1019769
https://www.lifewire.com/sql-fundamentals-1019780
https://www.lifewire.com/introducing-the-select-statement-4091916
https://www.lifewire.com/controlling-data-access-with-views-1019783

Web Development Skills – Part C - Databases

43

4. Glossary of SQL Commands:
(Source : https://www.w3schools.com/sql/sql_quickref.asp)

SQL Statement Syntax

AND / OR SELECT column_name(s)

FROM table_name

WHERE condition

AND|OR condition

ALTER TABLE ALTER TABLE table_name

ADD column_name datatype

Or

ALTER TABLE table_name

DROP COLUMN column_name

AS (alias) SELECT column_name AS column_alias

FROM table_name

or

SELECT column_name

FROM table_name AS table_alias

BETWEEN SELECT column_name(s)

FROM table_name

WHERE column_name

BETWEEN value1 AND value2

CREATE DATABASE CREATE DATABASE database_name

CREATE TABLE CREATE TABLE table_name

(

column_name1 data_type,

column_name2 data_type,

column_name3 data_type,

...

)

CREATE INDEX CREATE INDEX index_name

ON table_name (column_name)

or

CREATE UNIQUE INDEX index_name

ON table_name (column_name)

https://www.w3schools.com/sql/sql_quickref.asp

Web Development Skills – Part C - Databases

44

CREATE VIEW CREATE VIEW view_name AS

SELECT column_name(s)

FROM table_name

WHERE condition

DELETE DELETE FROM table_name

WHERE some_column=some_value

or

DELETE FROM table_name

(Note: Deletes the entire table!!)

DELETE * FROM table_name

(Note: Deletes the entire table!!)

DROP DATABASE DROP DATABASE database_name

DROP INDEX DROP INDEX table_name.index_name (SQL Server)

DROP INDEX index_name ON table_name (MS Access)

DROP INDEX index_name (DB2/Oracle)

ALTER TABLE table_name

DROP INDEX index_name (MySQL)

DROP TABLE DROP TABLE table_name

EXISTS IF EXISTS (SELECT * FROM table_name WHERE id = ?)

BEGIN

--do what needs to be done if exists

END

ELSE

BEGIN

--do what needs to be done if not

END

GROUP BY SELECT column_name, aggregate_function(column_name)

FROM table_name

WHERE column_name operator value

GROUP BY column_name

HAVING SELECT column_name, aggregate_function(column_name)

FROM table_name

WHERE column_name operator value

GROUP BY column_name

HAVING aggregate_function(column_name) operator value

IN SELECT column_name(s)

FROM table_name

WHERE column_name

IN (value1,value2,..)

Web Development Skills – Part C - Databases

45

INSERT INTO INSERT INTO table_name

VALUES (value1, value2, value3,....)

or

INSERT INTO table_name

(column1, column2, column3,...)

VALUES (value1, value2, value3,....)

FULL JOIN SELECT column_name(s)

FROM table_name1

FULL JOIN table_name2

ON table_name1.column_name=table_name2.column_name

LIKE SELECT column_name(s)

FROM table_name

WHERE column_name LIKE pattern

ORDER BY SELECT column_name(s)

FROM table_name

ORDER BY column_name [ASC|DESC]

SELECT SELECT column_name(s)

FROM table_name

SELECT * SELECT *

FROM table_name

SELECT DISTINCT SELECT DISTINCT column_name(s)

FROM table_name

SELECT INTO SELECT *

INTO new_table_name [IN externaldatabase]

FROM old_table_name

or

SELECT column_name(s)

INTO new_table_name [IN externaldatabase]

FROM old_table_name

SELECT TOP SELECT TOP number|percent column_name(s)

FROM table_name

TRUNCATE TABLE TRUNCATE TABLE table_name

UNION SELECT column_name(s) FROM table_name1

UNION

SELECT column_name(s) FROM table_name2

UNION ALL SELECT column_name(s) FROM table_name1

UNION ALL

SELECT column_name(s) FROM table_name2

Web Development Skills – Part C - Databases

46

UPDATE UPDATE table_name

SET column1=value, column2=value,...

WHERE some_column=some_value

WHERE SELECT column_name(s)

FROM table_name

WHERE column_name operator value

