Experiment Revision

Contents

To demonstrate Snell's law / To calculate the refractive index of a material - 2018-Q2................. 2
To determine the focal length of a concave mirror - 2013 - Q3.. 5
To measure the focal length of a concave lens - 2012 - Q2... 7
To calculate the wavelength of monochromatic light - 2018 - Q3.. 9

To determine the specific latent heat of fusion of ice - 2017 - Q3.. 12
To determine the specific latent heat of fusion of ice - 2010 - Q2.. 14

To determine the acceleration due to gravity by freefall - 2009 - Q1. ... 16
To investigate the relationsionship between the acceleration of a body and the force applied to it
-2010 - Q1..
To verify the principle of conservation of momentum - 2018 - Q1. ... 21
To verify the the condition for equillibrium - 2016 - Q1. ... 23
To verify Boyles' law- 2015 - Q1.. 26

To demonstrate Snell's law / To calculate the refractive index of a material - 2018-Q2.

Draw a suitable graph to show the relationship between the angle of incidence and the angle of refraction. State this relationship and explain how the graph verifies it.
Calculate all the sin
(i) and $\sin (r)$ values,
in your own table -
2 dp .

Use your graph to determine the refractive index of the material used.
(i) Write out the slope formula
(ii) Pick 2 points from your line
(iii) Put into formula and evaluate.

What would happen if the observed incident ray was perpendicular to the block.
(i) What would you observed about the angle of refraction if the angle of incident was 90'? \qquad

To determine the focal length of a concave mirror - 2013 - Q3.

Draw a labelled diagram of the arrangement.	
Diagram that includes concave mirror, mirror holder, screen, candle as light source. All apparatus are drawn in correct arrangement. Distances " u " and " v " are clearly labelled.	

To measure the focal length of a concave lens - 2012 - Q2.

Draw a labelled diagram of the arrangement.	
Diagram that includes concave lens, lens holder, screen, candle as light source. All apparatus are drawn in the correct arrangement. Distances " u " and "v" are clearly labelled.	
Explain how to set up the apparatus. Explain how you know when the screen is the correct distance from the lens.	C
	,
	- \times
Explain exactly how you measure " u " and " v ."	
For how many sets of data does the student repeat the experiment.	-
	- ${ }^{\circ}$
	-

| Why is it difficult to measure the image distance correctly? |
| :--- | :--- |
| Refer to write up |
| booklet / Real world |
| physics for this |
| question. |

To calculate the wavelength of monochromatic light - 2018 - Q3.

Describe the affect on the size of angle ϕ if the diffraction grating above was replaced with a diffraction grating of 80 lines per mm .

Hence determine which diffraction grating would give you a more accurate value for λ. Justify your answer.		
Refer to write up booklet / Real world physics for this puestion. qua		

What would you observe if the monochromatic light source was replace with a source of white light?	
Refer to write up booklet / Real world physics for this question.	
	-
	$\bigcirc \mathrm{CO}$
	-
	-
	-
	$\square \square$

To determine the specific latent heat of fusion of ice - 2017 - Q3.

Describe how (i) the mass of the ice was measured and (ii) it was ensured that the mass of ice added was at 0'C
(i) Refer to
which mass combinations of materials are subtracted from eachother.
(ii) Refer to write up booklet / Real world physics for this question.

State two ways in which the calorimeter could have been insulated during the experiment.		
Refer to write up		
booklet / Real world		
physics for this		
question.		

State any 2 characteristics of a suitable thermometer for use in this experiment.		
Refer to write up		
booklet / Real world		
physics for this		
phy		
question.		

To determine the specific latent heat of fusion of ice - 2010 - Q2.

To determine the acceleration due to gravity by freefall - 2009-Q1.

Draw a labelled diagram of the apparatus used in the experiment.
Indicate the distance " s " on your diagram.

How was the time interval "t" measured.		
Explain exactly how		
the timer is started.		
Explain exactly how		
the timer is		
the		
stopped.		

Calculate a value for the acceleration due to gravity by drawing a suitable graph based on the recorded data.	
Calculate all the distance values in metres. Calculate all the values for t^{2}, in the unit of s^{2}.	
Graph	On Graph paper, at the end of question.
Write out slope formula.	
	,
Use two points from the line.	
Double your slope value to get the acceleration due to gravity - unit is $\mathrm{m} / \mathrm{s}^{2}$.	
	$\bigcirc \times-$

Give two ways of minimising the effect of air resistance in this experiment.Refer to write up	
booklet / Real world	
question.	
	-
	- 1
	J
	\checkmark
	\bigcirc

Graph of data for Q1, 2009.

To investigate the relationsionship between the acceleration of a body and the force applied to it 2010 - Q1.

Using the recorded data, plot a graph to show the relationship between the acceleration on a body and the force applied to it. What does your graph tell you about this relationship.

Data can be graphed without being changed.	On Graph paper, at the end of question.
Describe the shape of the graph	
What relationship does this demonstrate?	\checkmark

Using your graph, find the mass of the body.				
Slope formula with data points from				
dhe line.				
Correct value for				
mass, with unit.			\quad	
:---				

To verify the principle of conservation of momentum - 2018 - Q1.

Calculate the velocities " u " and " v ".
Use this data to calculate the conservation of momentum.

Calculate loss of kinetic energy during the collision. What type of energy is it lost as?	
Write out kinetic	
ergy formula	
(es)	
Calculate (i) initial	
kinetic energy, (ii)	
final kinetic energy	
and subtract them	
There are generally	
only 2 types of	

To verify the the condition for equillibrium - 2016 - Q1.

Explain how the centre of gravity was found.			
Refer to write up			
booklet / Real world			
physics for this			
phy			
question.			

Explain how the upward and downward forces were determined.

Give 1 possible reason why the centre of gravity was not at the 50 cm mark.		
Refer to write up		
booklet / Real world		
physics for this		
question		

Using the data given, calculate (i) the net force acting on the metre stick and (ii) the sum of the moments about the 40 cm mark.

To verify Boyles' law-2015-Q1.

,	a labelled diagram, how the student obtained the
Diagram that includes a setup that has a manner of (i) Recording the volume of the gas (ii) Recording the pressure. (iii) Manner of changing the volume or pressure (iv) A label of the gas itself.	
Describe how the volume and pressure is recorded from your set up.	
Describe how you change the volume and pressure in this experiment (and remember to mention to take further measurements)	

Draw a suitable graph to show the relationship between the pressure of a gas and it's volume. State this relationship and explain how the graph verifies Boyle's law.

Use your graph to estimate the pressure of the gas at a volume of $250 \mathrm{~cm}^{3}$.	
Calculate the decimal value for $\frac{1}{250}$ Go to this value on the x-axis. Draw a line up until you hit the graph and then draw it horizontally to the y-axis. This is the value.	
	,
	\cdots
	-
	-
	-

Why might the temperature of the gas changed significantly during the experiment?		
Refer to write up booklet / Real world physics for this question		
How did the student ensure the temperature was the same for each measurement?		
Refer to write up booklet / Real world physics for this question		

Graph of data for Q1, 2015.

