Module 4 – Solutions

4.1	(a) (b) (c) (d) (e)	Yes No Yes No				
4.2	(a)	$P(B) = \frac{60}{100} = \frac{3}{5} = 0.6$				
	(b)	P(Boy not wearing glasses) = -	$\frac{24}{100} = \frac{6}{25} = 0.24$			
	(c)	B:Boy NG:Not wearing	glasses			
		Contingency table :	$P(B \mid NG) = \frac{24}{50} = \frac{12}{25} = 0.48$			
		Conditional probability rule :	$P(B NG) = \frac{P(B \text{ and } NG)}{P(NG)} = \frac{\frac{24}{100}}{\frac{50}{100}} = \frac{12}{25} = 0.48$			
	(d)	B:Boy NG:N	ot wearing glasses			
		Contingency table :	$P(NG B) = \frac{24}{60} = \frac{2}{5} = 0.4$			
		Conditional probability rule :	$P(NG B) = \frac{P(NG \text{ and } B)}{P(B)} = \frac{\frac{24}{100}}{\frac{60}{100}} = \frac{2}{5} = 0.4$			
	(e)	B:Boy NG:N P(NG B) = 0.4 P(B NG) = 0.48 $\Rightarrow P(NG B) \neq P(B NG)$	ot wearing glasses			
	(f)	G:Girl GL:W	earing glasses			
		Contingency table :	$P(G GL) = \frac{14}{50} = \frac{7}{25} = 0.28$			
		Conditional probability rule :	$P(G GL) = \frac{P(G \text{ and } GL)}{P(GL)} = \frac{\frac{14}{100}}{\frac{50}{100}} = \frac{7}{25} = 0.28$			
	(g)	G:Girl GL:W	earing glasses			
		Contingency table :	$P(GL \mid G) = \frac{14}{40} = \frac{7}{20} = 0.35$			
		Conditional probability rule :	$P(GL G) = \frac{P(GL \text{ and } G)}{P(G)} = \frac{\frac{14}{100}}{\frac{40}{100}} = \frac{7}{20} = 0.35$			
		$P(G GL) = \frac{14}{50} = \frac{7}{50} = 0.28$ $\Rightarrow P(G GL) \neq P(GL G)$	[From part (f)]			

P(Games console or internet but not both) = 0.31 + 0.17 = 0.48

- P(neither a games console nor internet access) = 0.31
- P(Pool or a Garage) = 0.47 + 0.17 + 0.68 = 0.68P(neither) = 0.32

P(Pool but no garage) = 0.04

$$P(\text{Pool} | \text{Garage}) = \frac{P(\text{Pool and Garage})}{P(\text{Garage})} = \frac{0.17}{0.64} \approx 0.266$$

Having a pool and a garage are not independent events. 26.6% of homes with garages have pools. Overall, 21% of homes have pools.

If having a garage and a pool were independent these would be the same.

No, having a garage and a pool are not disjoint events. 17% of homes have both.

$$0.27 + 0.2 + 0.5 = 0.34$$

(f)

(a)

(b) (c)

(d)

(e)

$$P(F | C) = \frac{P(F \cap C)}{P(C)} = \frac{0.02}{0.27 + 0.2} \approx 0.069$$

The two kinds of events are not disjoint events, since 2% of cars have both kinds.

Approximately 6.9% of cars with a cosmetic defects also have functional defects. Overall, the probability that a car has a functional defect is 7%. The probabilities are estimates, so these are probably close enough to say that the two types of defects are independent.

(a)
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

 $P(A \cup B) = 0.7 + 0.5 - 0.3$
 $P(A \cup B) = 0.9$
or reading from the Venn diagram (without the rule) 0.4+0.3 +0.2=0.9
(b) $P(A | B) = \frac{P(A \cap B)}{P(B)} = \frac{0.3}{0.5} = 0.6$

Functional

0.66

0.05

(c)	Not independent		or	Not independent	
	since $P(A B) \neq P(A)$			since $P(A \cap B) \neq P(A).P(B)$	
	i.e.	0.6≠0.7		i.e.	0.3≠0.35

Cosmetic

0.27

0.02

4.6

In this case 199 false positives for every 49 true positives.

4.10 (a) The net change in your finances is $- \notin 1$ when you lose and $\notin 35$ when you win.

Outcome	Probability of each outcome, P(x)	Value associated with each outcome(€), x	xP(x)
Get number	$\frac{1}{38}$	+35	$+35\left(\frac{1}{38}\right) = \frac{35}{38}$
Do not get number	$\frac{37}{38}$	_€1	$-1\left(\frac{37}{38}\right) = -\frac{37}{38}$
	25	07 1	

Expected Value $\mu = \sum xP(x) = \frac{35}{38} - \frac{37}{38} = -\frac{1}{19} \approx -0.0526$

This is not a fair game as the expected value is not zero

(b)

Outcome	Probability of each outcome, P(x)	Value associated with each outcome(€), x	xP(x)
Black	18 38	+35	$+35\left(\frac{18}{38}\right) = \frac{315}{19}$
Other colour	$\frac{20}{38}$	-1	$-1\left(\frac{20}{38}\right) = -\frac{20}{38}$

Expected Value $\mu = \sum xP(x) = \frac{315}{19} - \frac{20}{38} = \frac{305}{19} \approx 16.052$

This is not a fair game as the expected value is not zero.