4.1 (a) Yes
(b) $\quad \mathrm{No}$
(c) $\quad \mathrm{Yes}$
(d) Yes
(e) No
$4.2 \quad$ (a) $\quad P(B)=\frac{60}{100}=\frac{3}{5}=0.6$
(b) $\quad P$ (Boy not wearing glasses) $=\frac{24}{100}=\frac{6}{25}=0.24$
(c) $\quad \mathrm{B}$:Boy $\quad \mathrm{NG}$:Not wearing glasses

Contingency table: $\quad P(B \mid N G)=\frac{24}{50}=\frac{12}{25}=0.48$
Conditional probability rule: $P(B \mid N G)=\frac{P(B \text { and } N G)}{P(N G)}=\frac{24 / 100}{50 / 100}=\frac{12}{25}=0.48$
(d) B:Boy

NG:Not wearing glasses
Contingency table:

$$
\mathrm{P}(\mathrm{NG} \mid \mathrm{B})=\frac{24}{60}=\frac{2}{5}=0.4
$$

Conditional probability rule: $P(N G \mid B)=\frac{P(N G \text { and } B)}{P(B)}=\frac{24 / 100}{60 / 100}=\frac{2}{5}=0.4$
(e) $\quad \mathrm{B}:$ Boy \quad NG:Not wearing glasses
$P(N G \mid B)=0.4$
$P(B \mid N G)=0.48$
$\Rightarrow P(N G \mid B) \neq P(B \mid N G)$
(f)

G: Girl
GL:Wearing glasses
Contingency table: $\quad P(G \mid G L)=\frac{14}{50}=\frac{7}{25}=0.28$
Conditional probability rule: $P(G \mid G L)=\frac{P(G \text { and } G L)}{P(G L)}=\frac{14 / 100}{50 / 100}=\frac{7}{25}=0.28$
(g)

G: Girl

Contingency table:

Conditional probability rule: $P(G L \mid G)=\frac{P(G L \text { and } G)}{P(G)}=\frac{14 / 100}{40 / 100}=\frac{7}{20}=0.35$
$P(G \mid G L)=\frac{14}{50}=\frac{7}{50}=0.28 \quad$ [From part (f)]
$\Rightarrow P(G \mid G L) \neq P(G L \mid G)$
4.3

4.4

4.5

(a) $\quad \mathrm{P}($ Games console and no internet $)=0.31$
(b) $\quad \mathrm{P}$ (Games console or internet but not both)

$$
=0.31+0.17=0.48
$$

(c) $\quad \mathrm{P}$ (neither a games console nor internet access) $=0.31$
(a) $\quad \mathrm{P}($ Pool or a Garage $)=0.47+0.17+0.68=0.68$
(b) $\quad \mathrm{P}$ (neither) $=0.32$
(c) $\quad \mathrm{P}$ (Poolbut no garage) $=0.04$
(d) $\quad P($ Pool| Garage $)=\frac{P(\text { Pool and Garage })}{P(\text { Garage })}=\frac{0.17}{0.64} \approx 0.266$
(e) Having a pool and a garage are not independent events. 26.6% of homes with garages have pools. Overall, 21% of homes have pools. If having a garage and a pool were independent these would be the same.
(f) No, having a garage and a pool are not disjoint events. 17% of homes have both.
(a) $0.27+0.2+0.5=0.34$
(b) $\quad 0.27$
(c) $\mathrm{P}(\mathrm{F} \mid \mathrm{C})=\frac{\mathrm{P}(\mathrm{F} \cap \mathrm{C})}{\mathrm{P}(\mathrm{C})}=\frac{0.02}{0.27+0.2} \approx 0.069$
(d) The two kinds of events are not disjoint events, since 2% of cars have both kinds.
(e) Approximately 6.9% of cars with a cosmetic defects also have functional defects. Overall, the probability that a car has a functional defect is 7%. The probabilities are estimates, so these are probably close enough to say that the two types of defects are independent.
(a) $\quad P(A \cup B)=P(A)+P(B)-P(A \cap B)$
$P(A \cup B)=0.7+0.5-0.3$
$P(A \cup B)=0.9$
or reading from the Venn diagram (without the rule) $0.4+0.3+0.2=0.9$
(b) $\quad \mathrm{P}(\mathrm{A} \mid \mathrm{B})=\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{B})}=\frac{0.3}{0.5}=0.6$
(c) Not independent or Not independent
since $P(A \mid B) \neq P(A) \quad$ since $P(A \cap B) \neq P(A) \cdot P(B)$
i.e. $0.6 \neq 0.7 \quad$ i.e. $0.3 \neq 0.35$

4.7

4.8

(i) $\quad \mathrm{P}(\mathrm{L})=\mathrm{P}(\mathrm{A} \cap \mathrm{L})$ or $\mathrm{P}(\mathrm{B} \cap \mathrm{L})$
$P(L)=0.30 \times 0.05+0.70 \times 0.10$
$P(L)=\frac{17}{200}=0.085$
(ii) $\quad P(A \mid L)=\frac{P(A \cap L)}{P(L)}$
$\mathrm{P}(\mathrm{A} \mid \mathrm{L})=\frac{0.30 \times 0.05}{0.085}$

$$
P(A \mid L)=\frac{3}{7}=0.176(3 \text { d.p. })
$$

This shows clearly that $P(A \mid L) \neq P(L \mid A)$
4.9

(a) $\quad P(P)=P(C$ and $P)+P\left(C^{\prime} \mid P\right)$
$P(P)=0.005 \times 0.98+0.995 \times 0.02=0.0248$
$P(P)=0.0049+0.0199=0.0248$
(b) $\quad P(C \mid P)=\frac{P(C \cap P)}{P(P)}$
$P(C \mid P)=\frac{0.0049}{0.0248}=0.198$
When a disease occurs in a very small percentage of the population
(in this case, 0.5%), a test that is only
98% accurate will give a lot more
false postives than true positives.
In this case 199 false positives for
every 49 true positives.
4.10 (a) The net change in your finances is $-€ 1$ when you lose and $€ 35$ when you win.

Outcome	Probability of each outcome, $\mathrm{P}(\mathrm{x})$	Value associated with each outcome $(€), \mathrm{x}$	$\mathrm{xP}(\mathrm{x})$
Get number	$\frac{1}{38}$	+35	$+35\left(\frac{1}{38}\right)=\frac{35}{38}$
Do not get number	$\frac{37}{38}$	$-€ 1$	$-1\left(\frac{37}{38}\right)=-\frac{37}{38}$

Expected Value $\mu=\sum \mathrm{xP}(\mathrm{x})=\frac{35}{38}-\frac{37}{38}=-\frac{1}{19} \approx-0.0526$
This is not a fair game as the expected value is not zero
(b)

Outcome	Probability of each outcome, $\mathrm{P}(\mathrm{x})$	Value associated with each outcome $(€), \mathrm{x}$	$\mathrm{xP}(\mathrm{x})$
Black	$\frac{18}{38}$	+35	$+35\left(\frac{18}{38}\right)=\frac{315}{19}$
Other colour	$\frac{20}{38}$	-1	$-1\left(\frac{20}{38}\right)=-\frac{20}{38}$

Expected Value $\mu=\sum \mathrm{xP}(\mathrm{x})=\frac{315}{19}-\frac{20}{38}=\frac{305}{19} \approx 16.052$
This is not a fair game as the expected value is not zero.

