(a) The graph below shows the relationship between C, the temperature in ${ }^{\circ} \mathrm{C}$ (Celsius) and F, the temperature in ${ }^{\circ} \mathrm{F}$ (Fahrenheit).

(i) Use the graph to find the value of $60^{\circ} \mathrm{C}$ in ${ }^{\circ} \mathrm{F}$.

(ii) Use the graph to find the value of $50^{\circ} \mathrm{F}$ in ${ }^{\circ} \mathrm{C}$.

(iii) The formula below shows the relationship between C and F :

$$
C=\frac{5(F-32)}{9} .
$$

Use the formula to show that $212^{\circ} \mathrm{F}$ is equivalent to $100^{\circ} \mathrm{C}$.

(b) The map below shows 2 villages, \boldsymbol{A} and \boldsymbol{B}, in a part of a country in Africa. An Irish aid organisation wants to build a warehouse from which to serve the two villages. The warehouse should be less than 60 km from \boldsymbol{A} and less than 80 km from \boldsymbol{B}. Using your compass, draw and shade in the region on the map where the warehouse could be built.

Scale: 1 cm represents 10 km

previous	page	running

The following diagram shows an arrangement of tables and chairs in a sequence of patterns.

Note: $\square=$ table, and $=$ chair

$3^{\text {rd }}$ Pattern

(a) Draw the $4^{\text {th }}$ pattern in the sequence.
(b) Complete the table below to show the number of chairs in each of the first 6 patterns.

Number of Tables	Number of Chairs
1	6
2	
3	
4	
5	
6	

(c) Use your data from part (b) to graph the relationship between the number of tables and the number of chairs.

(d) How many chairs are there in the $10^{\text {th }}$ pattern?

previous	page	running

(e) There are exactly 54 chairs in one of the patterns. How many tables are in that pattern?

	-	-									-						-

(f) How many chairs, in total, are there in the first 7 patterns?

(g) Write a formula (in words) that shows the relationship between the number of chairs and the number of tables in any given pattern.

