Assignment 1: The Centroid of a Triangle

Definition of the Median and Centroid of a Triangle:
A line joining a vertex of a triangle to the midpoint of the opposite side is called a median of the triangle.

The point where the three medians meet is called the centroid.

Using the digital geoboards (https://apps.mathlearningcenter.org/geoboard/)
construct the centroids of the following triangles.

- $A(2,4), B(8,8), C(14,0)$
- $\mathrm{A}(2,1), \mathrm{B}(4,7), \mathrm{C}(12,1)$
- $A(2,1), B(6,7), C(12,3)$

In each find the ratio in which the centroid divides the median of the triangles. Justify your findings.

Assignment 2: Internal division of a line segment

Section 1: Finding the ratio m:n Use the digital geoboard to construct the following line segments and determine the ratio in which the decision point divides the line internally.

- Given $A(2,5)$ and $B(11,5)$, find the ratio in which the point $(6,5)$ divides the line segment $[A B]$
- Given $A(6,1)$ and $B(6,8)$, find the ratio in which the point $(6,5)$ divides the line segment $[A B]$
- Given $A(2,6)$ and $B(12,1)$, find the ratio in which the point $(6,4)$ divides the line segment $[A B]$
- Given $A(2,3)$ and $B(12,8)$, find the ratio in which the point $(6,5)$ divides the line segment $[A B]$
- Given $A(1,8)$ and $B(13,2)$, find the ratio in which the point $(10,3.5)$ divides the line segment [AB]

Section 2: Finding the coordinates of the division point Use the digital geoboard to construct the following line segments and determine the coordinate of the point that divides the line segment in a given ratio.

- Given that $A(1,7)$ and $B(13,7)$, find the point that divides $[A B]$ in the ratio 5:1
- Given that $A(6,7)$ and $B(6,1)$, find the point that divides $[A B]$ in the ratio 1:2
- Given that $A(1,9)$ and $B(9,1)$, find the point that divides $[A B]$ in the ratio 3:1
- Given that $A(3,2)$ and $B(13,7)$, find the point that divides $[A B]$ in the ratio 2:3
- Given that $A(10,8)$ and $B(13,0)$, find the point that divides $[A B]$ in the ratio 1:3

