

National Workshop 3

Day 2 Session 3

Overview of the Session

GitHub

The source code for all the files shown on the upcoming slides can be found on GitHub

Measures of Central Tendency


```
# A simple program to calculate and display averages
from statistics import *
# Initialise a list of values
values = [2,3,5,2,4]
# Compute the 3 averages
arithmetic mean = mean(values)
median value = median(values)
modal value = mode(values)
# Display the answers
print("The mean is ", arithmetic mean)
print("The median and mode are %d and %d" % (median value, modal value))
```

When the program is run the output looks like this:

```
The mean is 3.2
The median and mode are 3 and 2
>>>
```

Measures of Central Tendency

Check out the online documentation

Averages and measures of central location

These functions calculate an average or typical value from a population or sample.

mean()	Arithmetic mean ("average") of data.
fmean()	Fast, floating point arithmetic mean.
geometric_mean()	Geometric mean of data.
harmonic_mean()	Harmonic mean of data.
median()	Median (middle value) of data.
median_low()	Low median of data.
median_high()	High median of data.
median_grouped()	Median, or 50th percentile, of grouped data.
mode()	Single mode (most common value) of discrete or nominal data.
multimode()	List of modes (most common values) of discrete or nomimal data.
quantiles()	Divide data into intervals with equal probability.

Demonstration of matplotlib

```
# A simple program to demonstrate use of matplotlib
from matplotlib import pyplot as plt
# Initialise a list of values
values = [2,3,5,2,4]
                                                                     Demo
# Intervals for the x-axis
                                               5.0
x axis = [0, 1, 2, 3, 4]
                                               4.5
plt.plot(x axis, values, color='blue', lin
plt.title("Demo") # graph title
                                               4.0
plt.ylabel("Values") # label the y-axis
plt.show() # Display the plot
                                               3.5
                                               3.0
                                               2.5
                                               2.0
                                                       0.5
                                                            1.0
                                                                 1.5
                                                                      2.0
                                                                          2.5
                                                                               3.0
                                                                                         4.0
```

Demonstration of matplotlib

```
# A simple program to demonstrate use of matplotlib
from matplotlib import pyplot as plt
# Initialise a list of subjects
subjects = ['Irish', 'English', 'Maths', 'LCCS', 'Ag. Sc.']
                                                               Bar Chart Demo
percentages = [60, 72, 68, 83, 76] # Avera
                                              80 -
# Plot a bar chart
plt.bar(subjects, percentages)
                                              70
plt.title("Bar Chart Demo") # graph title
plt.ylabel("Average Percentages") # label
# put the names of the subjects on the x-a
plt.xticks(range(len(subjects)), subjects,
plt.show() # Display the plot
                                              20
                                              10
```

Text Analysis – word frequency

```
A program to visualise the most common words in a file
from matplotlib import pyplot as plt
from collections import Counter
# IMPORTANT: Make sure book.txt exists in runtime directory
bookFile = open("book.txt", "r") # Open the file
text = bookFile.read() # read the file
bookFile.close() # close the file
text list = text.split() # create a list
# use counter to return the most common words
# format is .... [('the', 1507), ('and', 714), etc
most common words = Counter(text list).most common(10)
words = [] # an empty list of words
word count = [] # an empty list of counts
# Build up the lists
for word, count in most common words:
    words.append(word) # append the word to the words list
    word count.append(count)
# Now create and display the chart ....
```

Text Analysis – word frequency

... continued from previous slide

Regular Expressions

A language that enables us to look for patterns in strings

```
import re

text1 = "THERE are 99 RED balloons"
print(re.sub('[0-9]', '', text1)) # remove digits
print(re.sub('[A-Z]', '', text1)) # remove uppercase
print(re.sub('[A-Z0-9]', '', text1)) # remove uppercase and digits
print(re.sub('[^a-z]', '', text1)) # leave lowercase
print(re.sub('[^a-zA-Z]', '', text1)) # leave letters and spaces
print(re.sub('[^a-zA-Z0-9]', '', text1)) # leave letters and digits
print(re.sub(r'\b\w{1,4}\b', '', text1)) # remove words of length 1-3

text1 = "$%**$%joe*&$%^&"
print(re.sub('[^a-zA-Z0-9]', '', text1))
```

Output

THERE are RED balloons are 99 balloons are balloons areballoons
THERE are RED balloons
THERE are 99 RED balloons
THERE balloons

joe

Text Analysis – word frequency

Eliminate words of three letters or less ... use Regular Expressions

```
A program to visualise the most common words in a file
    from matplotlib import pyplot as plt
    from collections import Counter
    import re
                                                                     Word Count Demo
                                                    400
      IMPORTANT: Make sure book.txt exists in ru
    bookFile = open("book.txt", "r") # Open the f
                                                    350
                                                 What do you think is the most common word in
    text = bookFile.read() # read the file
    bookFile.close() # close the file
                                                 Alice in Wonderland (longer than 3 letters)?
                                               Frequency 250 -1
    text = re.sub('[^a-zA-z0-9 \n]', '', text)
    text = re.sub(r'\b\w{1,4}\b', '', text)
    text list = text.split() # create a list
                                                    150
    # Continue as before ...
                                                    100
                                                     50
  Import the re library
12 Use the sub method
```

Pandas

Useful for very large files ... this file was sourced on Kaggle

1	short_name	age	dob	height_cn	weight_k	nationalit	club_nam	value_eur	wage_eur	player_p	o preferred
2	L. Messi	33	24/06/1987	170	72	Argentina	FC Barcelo	67500000	560000	RW, ST, C	FLeft
3	Cristiano Ronaldo	35	05/02/1985	187	83	Portugal	Juventus	46000000	220000	ST, LW	Right
4	J. Oblak	27	07/01/1993	188	87	Slovenia	Atlético	75000000	125000	GK	Right
5	R. Lewandowski	31	21/08/1988	184	80	Poland	FC Bayern	80000000	240000	ST	Right
6	Neymar Jr	28	05/02/1992	17 5	68	Brazil	Paris Saint	90000000	270000	LW, CAM	Right
7	K. De Bruyne	29	28/06/1991	181	70	Belgium	Manchest	87000000	370000	CAM, CM	Right

.. ...

8911	C. Pizarro	20	18/09/1999	176	70	Chile	Unión La	45000	500	СВ	Right
8912	Shan Huanhuan	21	24/01/1999	185	70	China PR	Dalian YiF	50000	2000	ST	Right
8913	R. Dinanga	18	06/12/2001	182	73	Republic	Cork City	45000	500	ST	Right
8914	J. Browne	19	10/09/2000	180	73	Republic	Finn Harp:	45000	500	ST	Right
8915	P. McGarvey	16	02/08/2003	180	76	Republic	Finn Harp:	30000	500	GK	Right
8916	Xie Xiaofan	22	15/03/1998	177	75	China PR	Jiangsu Su	45000	2000	CM	Right
8917	Wang Haijian	19	02/08/2000	185	67	China PR	Shanghai	45000	1000	CM	Right
8918	A. Cetiner	18	20/07/2001	175	70	Republic	Shelbourr	40000	500	CM	Right
8919	Huang Jiahui	19	07/10/2000	186	74	China PR	Dalian YiF	40000	1000	СВ	Right
8920	A. Phelan	19	20/06/2001	176	72	Republic	Waterford	40000	500	CM	Right
8921	J. Akintunde	24	29/03/1996	175	75	England	Derry City	40000	550	ST	Right
							1 (2)				

Let's explore the player's value

Pandas

```
# Using pandas - recommended for larger files
import statistics
import pandas
# Read the entire CSV file into a pandas DataFrame
df = pandas.read csv('FIFA21-player-list.csv')
# Filter out the column, value eur
player values = df['value eur']
# Compute and display the mean
mean value = round(statistics.mean(player_values), 2)
print("Mean Value:", mean value)
# Compute and display the median
median value = statistics.median(player values)
print("Median Value:", median value)
# Compute and display the min and max values
print("Min: €%f, Max: €%f" %(min(player values), max(player values)))
```

Output looks like this:

Mean Value: 2224813.29 Median Value: 650000.0

Min: €0.000000, Max: €105500000.000000

Demonstration of Samples

Commute Times

"Our topic is travel times, our data source are the other groups working and our hypothesis is that the average travel time will be 50 minutes and no one will have traveled for longer than 2 hours."


```
# Sample ALT2 - Commute times
import statistics
import re
import plotly.plotly
from plotly.graph objs import Bar, Layout
# Open and read the data file
file = open("data.txt","r")
string = file.read()
file.close()
# Scrub the data
clean string = re.sub(' minutes', '', string)
clean string = re.sub(' ', '', clean string)
string array = clean string.split('\n')
# Convert all the strings to integers
int array = [int(i) for i in string array]
# Determine and display the averages
mean value = statistics.mean(int array)
median value = statistics.median grouped(int array, 1)
mode value = statistics.mode(int array)
print("Mean: %.2f, Median %d, Mode %d" %(mean value, median value, mode value))
plotly.offline.plot({"data": [Bar(y=int array)],
    "layout": Layout(title="word count")
```


Considering curriculum planning

'Learning outcomes can best be defined as statements of what a learner **knows**, **understands** and is **able to do** after completion of learning.'

CEDEFOP (2009)

Considering curriculum planning

How will students demonstrate they have achieved the LOs?

What content or resources do you need?

Key message to remember:

Explore and teach the LOs through the lens of ALTs.

There are several ways to achieve this.

Group Activity

Develop a curriculum plan for January to April Focus on ALT2

Group activity - instructions

Discuss your next steps in relation to curriculum planning.

Focus on ALT 2. Remember to teach the LOs through the lens of the ALTs - there are numerous ways to achieve this.

Consider topics, LOs, build up to ALT2, ALT2, equipment, resources, assessment, differentiation, etc.

What will you do with the LOs for ALT2?

In what order should you teach them?

What about repeating LOs / linking to the other strands?

How will students demonstrate they have achieved the learning outcomes?

What content or resources will you need?

What can you include for Ordinary Level students?

Are there any considerations you should make for your students with SEN?

What about differentiation and extension of tasks?

Key Skills of Senior Cycle

LCCS Specification: p12

Group activity - instructions

Discuss your next steps in relation to curriculum planning.

Focus on ALT 2. Remember to teach the LOs through the lens of the ALTs - there are numerous ways to achieve this.

Consider topics, LOs, build up to ALT2, ALT2, equipment, resources, assessment, differentiation, etc.

Feedback

