

A simulation of the
Kessler effect using
Python

A simulation of the Kessler effect using Python

3

Contents

Overview ... 4

Conventions .. 4

Introduction .. 5

Program 1: Getting started with pygame ... 7

Program 2: Display a single square .. 8

Programming Exercises 1 .. 12

Program 3: Display multiple squares ... 14

Program 4: Animation I (basic movement) ... 15

Moving right ... 15

Programming Task 4.1 .. 17

Diagonal Animation .. 18

Program 5: Animation II (bouncing) .. 19

Programming Task 5.1. (Parson’s problem) .. 21

Program 6: Animation III (independent movement) .. 22

Programming Task 6.1 (Parson’s problem) ... 27

Program 7: Collision Detection I .. 28

Programming Task 7.1 .. 29

Programming Task 7.2 .. 30

Programming Task 7.3 .. 32

Programming Task 7.4 .. 33

Program 8: Circular Motion ... 34

Programming Task 8.1 .. 36

Programming Task 8.2 .. 36

A simulation of the Kessler effect using Python

4

Overview
In this step-by-step tutorial you will develop a Python program that can be used to visualise a

phenomena that occurs in space known as the Kessler Effect.

The Kessler Effect describes a scenario in which collisions between objects in low Earth Orbit (LEO)

could cause a cascading effect, generating even more debris and potentially making space activities

more challenging.

Space debris (often referred to as ‘space junk’) is represented on by rectangles created using the

pygame library. The tutorial starts off with a simple program that displays a single rectangle and

progressively build up a program that simulates the Kessler effect. In the process you will learn how

to control the movement of objects on the screen as well as simulate objects bouncing off the

screen edges and collisions with one another. By the end, you will have a hands-on understanding of

how space debris can accumulate over time, leading to an increased risk of collisions in space.

This tutorial has been developed as part of a series of teaching and learning resources developed by

Oide to promote EIRSAT-1, Ireland’s first ever satellite.1 Enjoy!

Conventions
To help with navigation through this tutorial, the following conventions are used:

Italics are used to highlight important new words and phrases and Courier

New font is used to denote Python code such as keywords, commands and

variable names

The icons illustrated below are used to highlight different types of information throughout this

tutorial.

Space for you to answer questions using pen and paper.

Experiment. An opportunity to ‘play with the code’ and see what happens.

Programming exercises. An opportunity for you to practice your Python
programming skills either by yourself or with your friends.

Reflection log. A space for you to reflect on your own learning and record
your thoughts.

The octocat (shown here to the left) is the GitHub integration symbol.
GitHub is a source code repository. Throughout this tutorial you will notice
this symbol appears along with code used. When you click on the octocat
you will be directed to the source code on GitHub in your web browser.

1 EIRSAT-1 stands for Educational Irish Research Satellite. For more information see https://www.eirsat1.ie/.

https://www.eirsat1.ie/

A simulation of the Kessler effect using Python

5

Introduction
Watch first minute of this video and answer the questions that follow,

https://www.youtube.com/watch?v=cX89BpzrAVY

What is space debris?

How big is space debris?

How is space debris created?

Why is there so much junk in space?

https://www.youtube.com/watch?v=cX89BpzrAVY

A simulation of the Kessler effect using Python

6

What is Low Earth Orbit?

How fast does space debris move?

What is the Kessler syndrome?

A simulation of the Kessler effect using Python

7

Program 1: Getting started with pygame
Key in the following code and save it on your computer.

Program listing 1

You will notice when you run the program it does

very little - except display the window shown here to

the right. Click the X on the top right corner to close.

The code is explained using comments which are

displayed in red.

Lines 1 and 2 import the libraries necessary to run this

tutorial.

Line 6 starts the pygame engine

Line 9 creates the pygame window.

Line 12 sets the title text for the pygame window.

Lines 15-20 make up what is called the game loop.

We will take a closer look at the game loop later.

Experiment!

Try the following and see if you can explain what is going on.

1. Change the title of the pygame window.

2. Change the pair of values (400, 300) used on line 9. Do this several times until you figure our

what each value represents. Can you make the window appear as a square?

What does 400 represent?

What does 300 represent?

https://github.com/pdst-lccs/kessler/blob/main/pgm1.py

A simulation of the Kessler effect using Python

8

Program 2: Display a single square
In this program you will learn how to display a single white rectangle in the display area as shown

here.

The code is shown below. Notice that there are 29 lines in this program whereas there were just 20

lines in the previous program.

Program listing 2

What are the main differences between this and the previous listing?

https://github.com/pdst-lccs/kessler/blob/main/pgm2.py

A simulation of the Kessler effect using Python

9

The main points to notice are:

1. Changes from the original code listing are highlighted in bold. (This includes new and changed
lines.)

2. The text in the title bar has changed to ‘A single white rectangle’.

What caused this change?

(The text passed into the call, pygame.display.set_caption on line 12 is displayed on

the title bar.)

3. Line 17 creates a rectangle object. It is important to understand that this line does not cause the
rectangle to be displayed. Rather, it creates a representation for the rectangle in the computer’s
memory and stores a reference to it in the variable, rectangle.

Let’s take a closer look at line 17:

What do you think the purpose of x, y, 20, 20 are on line 17?

Explain why the rectangle is drawn in a different position each time the
program is run?

The two values, x and y, represent the co-ordinates of the top-left corner of the rectangle. They
tell pygame where to position the rectangle when it is drawn. Line 15 initialises x to a random
integer between 0 and 400, and line 16 initialises y to a random integer between 0 and 300.

Experiment!

What happens if you set the co-ordinates of the top-left corner to 0, 0. Change line

17 as shown below and test your change by running the program several times

until you figure out what is happening.

A simulation of the Kessler effect using Python

10

Did you notice that the rectangle no longer appears in a random position every time the
program is run?

The values 20, 20 represent the width and height of the rectangle to be drawn.

Experiment!

Change the values for width and height and see what happens. You can make

the changes either individually or together.

What happens if you make the width wider than the width of the display area?

(Recall that the display area is 400 pixels wide.)

What’s the largest rectangle you can make?

A note on the pygame co-ordinate system

The pygame co-ordinate system is important to understand. The diagram below highlights the key

aspects of this system. By understanding the pygame co-ordinate system you can accurately

position and control objects in your pygame program.

The pygame co-ordinate system

Notice that the origin (0, 0) is at the top-left of the window. This means that the top-left position of

the screen has coordinates (0, 0), and the positive x-axis extends to the right, while the positive y-

axis extends downward. The x-coordinate values increase as you move to the right from the origin

and the y-coordinate values increase as you move down from the origin.

4. Line 18 tells pygame that it wants to draw the rectangular shape referenced by the variable,

rectangle. Please note that nothing is drawn until the line 29 -

pygame.display.update() - is executed.

A simulation of the Kessler effect using Python

11

This is done because drawing to the screen is a slow operation for the computer. You do not

want to draw to the screen after each drawing function is called, but only draw the screen once

after all the drawing functions have been called.

A note on colours

There are three primary colours of light: red, green and blue. By combining different amounts of

these three colours you can form any other colour.

In Python, colours can be represented using tuples of three

integers. The first value in the tuple is how much red is in the

colour. A value of 0 means there is no red in this colour, and a

value of 255 means there is a maximum amount of red in the

colour. The second value is for green and the third value is for

blue.

Black is the absence of any colour. This is represented by the

tuple (0, 0, 0).

White is the full combination of red, green, and blue. Therefore, it can be represented by the tuple

(255, 255, 255) for a maximum amount of red, green, and blue.

Experiment!

Declare a variable RED as shown below.

Now modify line 18 of program listing 2 to the following:

 Run the program and record what happens below.

What happens if you change the word RED to BLUE?

Match the squares in the display window

below to the co-ordinates. Either draw a line

from the letter to the corresponding square

or write in the letter beside the square

 x y

A 52 148
B 22 225
C 134 54
D 39 378
E 329 317

A simulation of the Kessler effect using Python

12

Programming Exercises 1

1. The window on the left-hand side below shows a white 50x50 rectangle on a black background.

Modify the code shown in program listing 2 so that it displays a red rectangle on a black

background as shown to the right-hand side.

c …. to this Solution

2. Change the program so that it displays a second rectangle – this time in green – beside the red

one.

Hint: You will need to add the following lines of code at an

appropriate place in the program.

Solution:

3. Make three further changes so that the program displays the following three windows.
(Click on the Octocat to see each solution.)

https://github.com/pdst-lccs/kessler/blob/main/pgm2A%20-%20red.py
https://github.com/pdst-lccs/kessler/blob/main/pgm2A%20-%20red%2Bgreen.py
https://github.com/pdst-lccs/kessler/blob/main/pgm2A%20-%20red%2Bgreen%2Bblue.py
https://github.com/pdst-lccs/kessler/blob/main/pgm2A%20-%20red%2Bgreen%2Bblue%2Byellow.py
https://github.com/pdst-lccs/kessler/blob/main/pgm2A%20-%20red%2Bgreen%2Bblue%2Byellow%2Bpink.py

A simulation of the Kessler effect using Python

13

Experiment!

Replace lines 15-18 in program listing 2 with the lines below.

Run the program and record your findings in the space provided below.

What pattern do you get?

How many rectangles can you fit across the window?

How many rectangles can you fit down the window?

What if you change the size of the window? What if you change the size of the

shapes?

4. Can you write a program to display a chequerboard as shown below?

A simulation of the Kessler effect using Python

14

Program 3: Display multiple squares
In the previous lesson you learned how to create and display a single rectangle. In this lesson you

will learn how to build on this in order to display multiple rectangles as shown on the right hand side

below.

Program listing 3

The program shown in listing 3 creates and displays 10 rectangles. This effect is achieved using the

for loop statement on line 19. The for loop statement on line 19 tells Python to run a loop 10

times. Note that lines 20-23 are indented. These lines make up the loop body.

You have already seen lines 20-22 – they are identical to lines 15-17 in program listing 2. These lines

create a single rectangle using a randomly generated (x, y) co-ordinate for the top-left corner.

You have also seen line 23 – this corresponds to line 18 in program listing 2. This line 18 tells

pygame that it wants to draw the rectangular shape referenced by rectangle. Please note that

nothing is drawn until the line 33 - pygame.display.update() - is executed.

Programming Task

Can you figure out how to set the width and height of the rectangles to be random?

What about drawing randomly coloured squares?

https://github.com/pdst-lccs/kessler/blob/main/pgm3.py

A simulation of the Kessler effect using Python

15

Program 4: Animation I (basic movement)
In this lesson we will learn how to give the appearance that the square is moving. This is called

animation.

Animation can be achieved simply by re-drawing the block shape in different positions. We create

the illusion of movement if this re-drawing is done continually i.e. within a loop such as the game

loop.

The position of each shape can be accessed and modified by using the rectangle variable in our

program listings. Each rectangle contains four special values (called attributes) as outlined below:

• rectangle.left: This is the x-coordinate of the left side of the rectangle

• rectangle.right: This is the x-coordinate of the right side of the rectangle

• rectangle.top: This is the y-coordinate of the top side of the rectangle

• rectangle.bottom: This is the y-coordinate of the bottom side of the rectangle

These attributes can be treated as variables. The secret to implementing animation lies in the

manipulation of these variables.

Moving right
For example, if we want to give the impression

something is moving rightwards we would change the

value of rectangle.right by a positive amount.

This is illustrated on line 32 in program listing 4 shown

here to the right. This line increments the value of

rectangle.right by 1 pixel. Therefore, the next

time the rectangle is drawn and the screen is updated

the rectangle will appear 1 pixel to the right of its old

position.

When the program is run you will see the square move

from left to right across the window until it eventually

disappears off the right edge of the window.

If you run the program several times you should notice that the square always starts

along the left edge. Why do you think this is?

https://github.com/pdst-lccs/kessler/blob/main/pgm4-move_right.py

A simulation of the Kessler effect using Python

16

Answer.

The square always starts on the left edge because line 20 creates the initial rectangle using 0 as the

value for the left co-ordinate.

Why does the square always appear to start at a different position along the left

edge of the display window?

The initial vertical position of the square appears to be random because the y-coordinate is a

random number between 0 and 300. This causes the square to be appear at a random position along

the y-axis.

This illusion of movement is achieved by changing the right co-ordinate of the square on each

iteration of the game loop. This is done on line 32 which adds 1 to the rectangle.right

attribute. This causes the square to appear 1 pixel to the right the next time it is drawn (line 33) and

the window’s display area is updated (line 36).

Experiment!

Comment out line 31 and see what happens.

Run the program and record your findings in the space provided below.

Now comment out line 37.

 Explain the purpose of lines 31 and 37.

Line 31:

Line 37:

− Line 31 acts like an eraser. It fills the background with black to remove any trace of the square in

its original position before re-drawing it in its new position.

− Line 37 causes the program to slow down. It tells Python to ‘sleep’ for a millisecond on each

iteration.

A simulation of the Kessler effect using Python

17

Programming Task 4.1
Program listing 4 shown below demonstrates how to move a square from the

bottom to the top of the window. Pay particular attention to the techniques used to

set the initial position of the square (lines 19 and 20) and move the square upwards

by subtracting 1 from the rectangle.top attribute on each iteration of the loop

(line 32).

Modify the code to achieve the following animations:

a) from the right edge of the window to the left (Hint: the x-coordinate of the right edge is 400.)

b) from top edge of the window to the bottom (Hint: the y-coordinate of the top edge is 0.)

Program listing 4 (move up)

Reflection.

What was your main challenge in completing this programming task?

Outline any limitation to the animation you can think of so far.

https://github.com/pdst-lccs/kessler/blob/main/pgm4-move_up.py

A simulation of the Kessler effect using Python

18

Diagonal Animation
Movement from the top-left corner to the bottom right corner of the window (diagonal animation)

is achieved using the code shown in program listing 4.2 below.

Program listing 4.2

Notice from lines 28 and 29 that two Boolean variables – move_down and move_left are

initialised to True and False respectively.

• By setting move_down to True will cause the movement of the square to be from top to

bottom

• By setting move_left to False will cause the movement of the square to be from left to right

These settings combine to give the illusion that the square is moving diagonally – downward and

rightward – at the same time.

The actual animation itself is implemented in lines 40-48. As before, the animation is created by

repeatedly changing the position of the square.

Experiment!

Change lines 28 and 29 as follows

Run the program and record your findings in the space provided below.

https://github.com/pdst-lccs/kessler/blob/main/pgm4-2.py

A simulation of the Kessler effect using Python

19

Program 5: Animation II (bouncing)
In the previous lesson we learned how by changing the position of a square we can create the

illusion of animation. One obvious drawback to the way our animation behaves is that the square

disappears as soon as it reaches the edge of the window.

We need to think more carefully about what we want. How exactly should the system behave? What

should the shape do when it reaches the edge of the window? Should it re-appear on the opposite

side or simply bounce back?

The answers to these question will define our system requirements. For the purpose of this lesson

we define our requirements as depicted in the illustrations shown below.

The key to implementing this motion lies in controlling the values of the two Boolean variables –

move_down and move_left – and knowing when the shape has reached one of the edges.

The pseudo-code to explain what happens when the square is moving vertically (i.e. either in a

downward direction or an upward direction) is shown below.

If the square is moving down:

If the square is at the bottom edge of the window:

change the direction (i.e. set move_down to False to indicate that the square is now moving up)

Else (the square is just moving down):

Increase the y-coordinate of the square’s bottom edge

Else (the square must be moving up):

If the square is at the top edge of the window:

change the direction (i.e. set move_down to True to indicate that the square is now moving down)

Else (the square is just moving up):

Decrease the y-coordinate of the square’s top edge

This Python implementation of this pseudo-code is shown between lines 42 and 52 in program listing

5 on the next page.

A simulation of the Kessler effect using Python

20

Note that the code below shows the game loop only. The first 30 lines are identical to those shown

in program listing 4.2.

Program listing 5

Lines 42-64 handle the animation. The vertical movement (as described in the pseudo-code earlier is

implemented from lines 42-52), while lines 54-64 implement the horizontal animation.

The expression rectangle.bottom >= WINDOWHEIGHT on line 44 is used to

determine if the square has reached the bottom edge of the window.

Explain the purpose of the following three expressions:

https://github.com/pdst-lccs/kessler/blob/main/pgm5.py

A simulation of the Kessler effect using Python

21

Programming Task 5.1. (Parson’s problem)
The graphic below depicts 11 separate blocks of code in no particular order. When

the blocks are combined into the correct order the resulting program will display 10

squares. Each square will be animated in a manner like the animation achieved

earlier using program listing 5.

A link to the solution is provided here

Reflection

What were the main challenges and how did you overcome them?

 Evaluate the solution. Identify one improvement that could be made.

https://github.com/pdst-lccs/kessler/blob/main/pgm5A%20-%20parsons%20problem.py

A simulation of the Kessler effect using Python

22

Program 6: Animation III (independent movement)
The solution to the previous programming task results in a program that displays 10 animated

squares. However, there is one major drawback (which hopefully you identified in the evaluation) -

the squares do not move independently. This gives a ‘herd like’ behaviour in which every square

follows the same movement pattern as depicted on the left hand side below. The arrows indicate

the direction of movement. The desired behaviour – all squares moving independently in different

directions – is depicted on the right hand side.

Actual behaviour

Every square moves in the same direction

Desired behaviour

Squares moving independently

In this lesson you will learn how to make each square move independently. The solution makes use

of a list of dictionaries. The code below shows how this list is constructed. The list is called

satellites and the for loop is used to create 10 different elements. Each element is a dictionary

called satellite and each satellite contains the following keys:

- sprite: A reference to the rectangle object.

- h_speed: A random integer – either 1 or 2 used to control the horizontal speed.

- v_speed: A random integer – either 1 or 2 used to control the vertical speed.

- move_down: a Boolean variable used to indicate and control the vertical movement of sprite.

- move_left: a Boolean variable used to indicate and control the horizontal movement of sprite

Program listing 6 (part 1)

The independent movement is made possible because the dictionary stores values for h_speed,

v_speed, move_down, and move_left for each individual sprite. (This can be contrasted with

https://github.com/pdst-lccs/kessler/blob/main/pgm6.py

A simulation of the Kessler effect using Python

23

the previous implementation in which the values of MOVESPEED, move_down, and move_left

were applied to every rectangle.)

The code below demonstrates how animation is achieved for each individual sprite.

Program listing 6 (part 2)

Compare the animation algorithm shown in listing 6B with that of listing 5.

What similarities and differences do you notice?

Similarities:

Differences:

Using pseudo-code (or otherwise) explain how vertical animation is achieved in the

above code.

https://github.com/pdst-lccs/kessler/blob/main/pgm6.py

A simulation of the Kessler effect using Python

24

A more detailed explanation of program listings 6A and 6B

Let’s examine the code in program listing 6A and 6B in a little more detail. You should focus

particular attention on two variables:

1. satellites in listing 6A and

2. satellite in listing 6B.

The former is a list and the latter is an element of the list which has a dictionary datatype.

For the sake of simplicity let us say that the code in program listing 5A created 5 (and not 10)

satellite objects. (To make this happen all you would need to do is change the for loop counter

from 10 to 5.). The for loop in listing 5A builds up a list of satellites.

Each of the 5 satellite objects are represented in memory by a dictionary. The dictionary for each

satellite stores that satellite’s position on the screen as well as the vertical and horizontal direction

and speed. Each dictionary is a separate element in a list that contains all the satellites. So, the

memory representation for these 5 satellites might look as follows:

The graphic depicts a memory representation for 5 satellites. The satellites are stored as a list of

dictionaries. The list is called satellites and each individual satellite is a dictionary stored as a

separate element in this list.

A simulation of the Kessler effect using Python

25

Program listing 6B starts with a for loop:

This tells Python to iterate through each of the elements in the satellites list and, as it passes

over each element i.e. satellites[0], satellites[1], satellites[2],

satellites[3], and satellites[4],– refer to it by the variable satellite. So, the

variable satellite is used as a generic name to refer to whichever element of the satellites

list the loop happens to be iterating over.

The image shown below depicts 5 ‘satellites’ all moving in different directions around the display

window. The 5 satellites shown here as 20x20 squares correspond to the 5 dictionaries on the

previous page.

The information required to display and move each satellite object is contained in its own dictionary.

For example, the first element – satellites[0] - corresponds to the square on the top left hand

corner in the display window. The arrows are used to indicate which direction the objects are

moving in. Since the arrow beside the first object is pointing diagonally upwards and leftwards it

indicates that the object is moving in an up-left direction. This information can be found in the

dictionary entry where the value of move_left is True and move_down is False.

Notice also that the position of each individual satellite (square) is stored as part of the sprite

entry in each dictionary. For example, the x-coordinate of the top-left square is 15 and the y-

coordinate is 35. Each square has a width and height of 20 pixels.

Finally, the dictionary stores the horizontal and vertical speeds in h_speed and v_speed

respectively. These are the amounts by which the animation algorithm adds or subtracts (depending

on the direction the object is travelling) to/from the object’s current position in order to achieve the

illusion of movement.

A simulation of the Kessler effect using Python

26

Explain how the variables h_speed and v_speed are used in program listing 6B.

h_speed

v_speed

Given the following memory representation for 3 satellites, illustrate how they

would be displayed on the 400 x 400 display window to the right. Recall that the

top-left corner is (0, 0)

Note: For each satellite you should draw a square at the approximate correct position, indicate

its direction using a diagonal arrow and state which colour it will be displayed as.

Explain why the animation algorithm shown in listing 6B results in four types of

diagonal movement only i.e. up-left, up-right, down-left and down-right.

List four other types of movement not implemented by the animation algorithm

A simulation of the Kessler effect using Python

27

Programming Task 6.1 (Parson’s problem)
Arrange the blocks of code shown below into the correct order to produce a

running program. The program should display 10 independently animated squares.

A link to the solution is provided here

Reflection

What were the main challenges and how did you overcome them?

 Evaluate the solution. Identify one improvement that could be made.

https://github.com/pdst-lccs/kessler/blob/main/pgm6A%20-%20parsons%20problem.py

A simulation of the Kessler effect using Python

28

Program 7: Collision Detection I
Now that you have learned how to control the squares so that they can move independently, the

possibility of collisions between squares has been introduced. What should happen when two

squares crash into one another?

Before answering this question, it might be useful to consider how to detect collisions. Let’s say

there are two squares referenced in your code by the variables square1 and square2. The

graphic on the left shows that the squares are moving towards each other – they are on a collision

course. The graphic on the right shown the squares colliding – the squares are overlapping.

Two squares on a collision course Two squares collide!

When you want (your program) to detect collisions you can use the pygame method

colliderect. Because the method returns True if the squares overlap and False of they do

not overlap, it is included as part of an if statement as shown below.

Since square1 colliding into square2 can be considered the same as square2 colliding into

square1, the if statement shown below can also be used.

The main thing to understand is how to detect collisions.

A simulation of the Kessler effect using Python

29

Programming Task 7.1
Given two moving objects – circle and rectangle - write a Python statement

to display the line HIT if they collide.

What change would you need to make to your solution so that it also displays the

message MISS if the two objects do not collide?

Now that you can detect object collision we will return to our earlier question: what should happen

when two objects crash into one another? Of course, we could do nothing i.e. ignore the collision

and simply let both objects continue along their merry ways as though nothing at all happened. This

is effectively what is already happening. We want to model something more realistic. One idea

would be to simulate a ‘bouncing effect’ in which the direction in the objects are travelling is

changed by the impact. Let’s examine how this could be achieved.

The graphic below illustrates the ‘bouncing effect’ we are trying to achieve.

Before collision
Squares moving towards each other

Collision
After collision

Squares have changed direction

The code snippet below shows how this ‘bouncing effect’ can be achieved between two objects.

A simulation of the Kessler effect using Python

30

As you can see from the code snippet the horizontal and vertical directions of the satellite are

reversed if the code detects a collision. This is achieved by applying the not Boolean operator to

whatever value move_left and move_down were before the collision. For example, if

move_left was True before the collision its value would be changed to False (i.e. not True)

as a result of the collision. Similarly, if move_down was False before the collision its value would

be changed to True (i.e. not False) as a result of the collision.

By now you should understand how to achieve a bouncing effect between two objects. In order to

make this work when there are multiple ‘satellites’ moving around the screen (as is the case here)

you will need to include the code inside another for loop.

The for loop iterates across every satellite in the list of satellites checking for a collision. Notice that

the condition has been modified to include the expression sat[‘sprite] != rectangle.

Because the loop checks every statellite for a possible collision with the current satellite (rectangle)

it must take action not to detect a collision with itself.

Programming Task 7.2
Insert the above code snippet at the end of the animation algorithm shown in

program listing 6A to create a bouncing effect simulation with multiple objects.

(You should be able to use the code resulting from programming task 6 as your base

program.)

Experiment!

Replace the two lines ...

... with the following two lines:

Explain any change(s) to the bouncing effect which you notice?

A simulation of the Kessler effect using Python

31

The full solution to the programming task on the previous page is shown in program listing 7.

Program listing 7: Collision Detection (and bounce)

https://github.com/pdst-lccs/kessler/blob/main/pgm7.py

A simulation of the Kessler effect using Python

32

Reflection

Can you think of any other effects that could be added in when the objects collide?

One possible enhancement you could make would be to simulate an object breaking up when it

collides with another. This could be called the disintegration effect.

The disintegration effect could be achieved by halving the objects width and height every time it

crashes into another object. You will achieve this effect by completing the next programming task.

Programming Task 7.3
Modify the collision detection algorithm of program listing 7 by including the

highlighted lines from the code snippet below.

Run the code and record your observations below.

Can you suggest any enhancements that could be made?

Observations:

Enhancements:

https://github.com/pdst-lccs/kessler/blob/main/pgm7A.py

A simulation of the Kessler effect using Python

33

So far so good! Or is it?

Did you observe from running the previous program that there were always the same number of

objects on the display screen. If your initial loop created 5 objects then there would always be 5

objects. The only change that would happen when they collided was that one would get smaller.

A more realistic model would be to split the object upon impact with another object as depicted

below.

Before collision
Squares moving towards each other

Collision
After collision

Squares have changed direction

The implementation – shown below extends the collision detection algorithm

Programming Task 7.4
Modify the collision detection algorithm to include the lines highlighted in the code

snippet below to simulate the creation of debris when two objects collide.

https://github.com/pdst-lccs/kessler/blob/main/pgm7B.py

A simulation of the Kessler effect using Python

34

Program 8: Circular Motion
So far, all motion has been in a straight line – horizontally, vertically, or diagonally. In this program

you will learn how to make a single object move in an elliptical orbit around a fixed central object.

You can think of the moving object as a satellite and the fixed central object as Earth.

The desired effect is illustrated below.

We will piece the different elements of the solution like a jigsaw.

STEP 1. The first piece of the jigsaw is the code to display Earth.

This line of code draws a blue circle with a radius of 50 units at the centre of the window.

Since the window will need to be refreshed to simulate the satellite movement this code will have to

be inside the main program loop.

Reflection

What causes the above code to position Earth in the centre of the window?

Reflection

What would happen if Earth was not re-drawn every time the screen was refreshed?

A simulation of the Kessler effect using Python

35

STEP 2. The next step is to create the satellite object itself. We already know how to do this from

earlier programs, but the code is shown here again just to remind you.

We are using a Python dictionary to store the information for the satellite. The dictionary has several

items as represented by the following key-value pairs:

Key Value

sprite A rectangle object with random widths and

heights set between 1 and 10 units.

colour Three random values between 0 and 255.

Ensures the colour of the satellite is random.

angle A random value between 0 and 360. This

value is used to calculate the position of the

rectangle as it moves around the earth.

X_ellipse This is the major radius of the ellipse.

Y_ellipse This is the minor radius of the ellipse.

STEP 3. We now need the code to simulate the elliptical motion. This is accomplished using the

formula for the circumference on a circle as illustrate in the code below. The code is placed inside

the main program loop which refreshes the screen every hundredth of a second during which time

the x and y position of the satellite are changed to give the illusion of movement.

STEP 4. Now that the details of the satellite have been changed it can be displayed at its new

position using the following line of code.

STEP 5. Putting it all together

The full solution is provided in program listing 8 (pgm8.py) here

https://github.com/pdst-lccs/kessler/blob/main/pgm8.py

A simulation of the Kessler effect using Python

36

Final Tasks

Programming Task 8.1
Modify the code to create and display 100 satellite objects all orbiting about a

central point.

Programming Task 8.2
Write a program to simulate the Kessler effect. As the satellites collide into each

other they will break up into smaller satellites (shown below in RED).

