## Session2: Algorithms I

LEAMING CERTIIICATE

## Overview of the session

## Oide

| Part 1 | Introduction to algorithms |
| :--- | :--- |
| Part 2 | Algorithms for mean, median and mode |
| Part 3 | Breakout activity (Python) |

## By the end of this session..

Participants will have...
...reflected on the importance of and the ubiquitous nature of algorithms in today's society
...participated in a coding activities relating to measures of central tendency
...reflected on ideas to facilitate the effective learning of algorithms
in their own classrooms and, in particular, in relation to ALT2

Oide

# Introduction to Algorithms 

LEAVING CERTINICATE

## Algorithms and the Specification

"Computer science is the study of computers and algorithmic processes. Leaving Certificate Computer Science includes how programming and computational thinking can be applied to the solution of problems, and how computing technology impacts the world around us."

NCCA Curriculum specification, Page 1

| Strand 1: Practices <br> and principles | Strand 2: Core <br> concepts |
| :--- | :--- |
| - Computers and society | - Abstraction |
| - Computational thinking | . Algorithms |
|  | Design and development |

Strand 3: Computer science in practice

- Applied learning task 1
- Interactive information systems
- Applied learning task 2 - Analytics
- Applied learning task 3

Modelling and simulation

- Applied learning task 4

Page 11

Embedded systems

## LCCS Learning Outcomes

2.5 use pseudo code to outline the functionality of an algorithm


S2: Algorithms
Programming concepts

Sorting: Simple sort, Insert sort, Bubble sort, Quicksort
2.10 explain the common measures of algorithmic efficiency using any algorithms studied

## What is an algorithm?

"A step-by-step procedure for solving a problem or accomplishing some end especially by a computer"

Merriam-Webster
Because of their speed and reliability computers are an ideal tool for running algorithms.


Algorithms are:
a sequence of instructions
a way of capturing intelligence
general solutions to problems
expressed in a variety of different ways
Characterised by input., processing and output

## Some examples

## Chocolate Cream Pie

1. Heat milk, marshmallows and chocolate in 3-quart saucepan over low heat, stirring constantly, until chocolate and marshmallows are melted and blended. Refrigerate about 20 minutes, stirring occasionally until mixture mounds slightly when dropped from a spoon.
2. Beat whipping cream in chilled small bowl with electric mixer on high speed until soft peaks form. Fold chocolate mixture into whipped cream. Pour into pie shell. Reffigerate uncovered about 8 hours or until set. Garnish with milk chocolate currs and whipped cream.
```
1. Set low = 0
2. Set high = length of list - 1
3. Set index = low+high
4. If the value at the index position is the same as the target value
        Return index
    Else If the value at the index position is less than the target value
        Set low = index + 1
    Else If the value at the index position is less than the target value
        Set high = index - 1
5. Go back to step 3 above
6. Return -1
```



```
p = 1029
q = 462
r = p%q # step 1
while (r != 0): # step 2
    p = q # step 3
    q = r # step 3
    r = p%qq # step 1 (again)
print("GCD is", q)
```


## Oide

## DESIGN

create a
representation, decide on tools

## Flowcharts



## Quizlet (flowcharts)


https://quizlet.com/758767872/match

| Symbol | Name | Function |
| :---: | :---: | :---: |
|  | Arrows | An oval represents a start <br> or end point <br> shows relationships <br> between the <br> representative shapes |
|  | Input/ Output | A parallelogram <br> represents input or output |
|  | Drocess | A rectangle represents a <br> process |

## Algorithms for mean, median and mode



## Measures of Central Tendency

## Oide



## A look ahead to ALT2

3.4. Develop algorithms that can find the frequency, mean, median and mode of a data set.
3.5. Structure and transform raw data to prepare it for analysis.
3.6. Represent data to effectively communicate in a graphical form.
3.7. Use algorithms to analyse and interpret data in a way that informs decisionmaking.

## Measures of Central Tendency

```
# A program to demonstrate the use of some statistics functions
import statistics
# Initialise a list of values
values = [2,3,5,2,4]
# Compute the 3 averages
arithmetic_mean = statistics.mean(values)
median_value = statistics.median(values)
modal_value = statistics.mode(values)
# Display the answers
print("The mean is ", arithmetic_mean)
print("The median and mode are %\overline{d and %d" %(median_value, modal_value))}
When the program is run the output looks like this:
The mean is 3.2
The median and mode are 3 and 2

\section*{Mean}

A representative value

Input: A list of values

Step 1. Add the values

Step 2. Calculate the mean

Output: The mean


Divide the total by the number of
values

\section*{Mean: Flowchart and code}

```

    Program to find the mean of a list of values
    ```
    Program to find the mean of a list of values
# Version 1
# Version 1
# Calculate and return the mean of all the values
# Calculate and return the mean of all the values
in L
in L
def arithmetic_mean(L):
def arithmetic_mean(L):
    # set the initial value of total to zero
    # set the initial value of total to zero
    total = 0 # running total of values in L
    total = 0 # running total of values in L
    # Now loop over the list
    # Now loop over the list
    for v in L:
    for v in L:
            total = total + v # running total
            total = total + v # running total
    # Divide by the total by the number of values
    # Divide by the total by the number of values
in L
in L
    return total/5
    return total/5
# PYTHON STARTS EXECUTING FROM HERE ...
# PYTHON STARTS EXECUTING FROM HERE ...
# Initialise a list of values
# Initialise a list of values
my_list = [18, 27, 15, 13, 22]
my_list = [18, 27, 15, 13, 22]
# Call the function
# Call the function
my_mean = arithmetic_mean(my_list)
my_mean = arithmetic_mean(my_list)
# Display the answer
```


# Display the answer

```

\section*{Mean}

\section*{Oide}

Initialise the list
\(\mathrm{L}=[18,27,15,13,22]\)

total \(=0\)
for \(v\) in \(L\) :
total \(=0\)
for \(v\) in \(L\) :
total \(=\) total +v
Compute a running total
total total \(+v\)



45


95

Compute and display the mean

mean \(=\) total/5
print(mean)

\section*{Median}

Middle value in a sorted list
Input: A list of values

Step 1. Sort the list
\begin{tabular}{|c|c|c|c|}
\hline 0 & 1 & 2 & 3 \\
\hline 18 & 27 & 15 & 13 \\
\hline
\end{tabular}

Step 2. Find middle position
\begin{tabular}{|c|c|c|c|c|}
\hline 0 & 1 & 2 & 3 & 4 \\
\hline 13 & 15 & 18 & 22 & 27 \\
\hline
\end{tabular}

Step 3. Determine the median
\begin{tabular}{c|c|c|c|c|}
\hline 0 & 1 & 2 & 3 & 4 \\
\hline 13 & 15 & 18 & 22 & 27 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 0 & 1 & 2 & 3 & 4 \\
\hline 13 & 15 & 18 & 22 & 27 \\
\hline
\end{tabular}

Output: The median
\begin{tabular}{|l|}
\hline 18 \\
\hline 프 \\
\hline
\end{tabular}

\section*{Median}
```


# A program to find the median of a list of values

# Version 1

L = [18, 27, 15, 13, 22]

# To find the median we need to sort the list

L.sort() \# the values are sorted 'in place'

# The next step is to find the index of the middle value

num values = len(L)
mid = num_values//2
median = L[mid] \# the median is in the middle

# Display the result

print("The median value is: %.2f" %median)

```

\section*{Median (dealing with an even number of values )}


In a list with 5 values the median is at index 2.
\begin{tabular}{|c|c|c|c|c|}
\hline 0 & 1 & 2 & 3 & 4 \\
\hline 13 & 15 & 18 & 22 & 27 \\
\hline
\end{tabular}

In a list with 4 values we need to use indices 1 and 2


\section*{Mode}

\section*{Oide}

The most frequently occurring value

Input: A list of values
\begin{tabular}{l|l|l|l|l|l|l}
18 & 16 & 17 & 18 & 19 & 18 & 17 \\
\hline
\end{tabular}

Output: The mode


At a glance we can see the mode is 18 but how do we capture this algorithmically?


\section*{Mode}

The most frequently occurring value
Input: A list of values
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline 18 & 16 & 17 & 18 & 19 & 18 & 17 \\
\hline
\end{tabular}

Step 1. Create a list of unique values

Step 2. Create a list of frequencies


The two lists tell us the frequency of each value
Step 3. Determine the mode
The value that corresponds to the highest frequency

Output: The mode

```


# A program to find the mode of a list of values

# Version 1

# Initialise a list of values

L = [18, 16, 17, 18, 19, 18, 17]

# Build up a list of unique values

unique_values = []
for value in L:
if value not in unique_values:
unique_values.append(value)

# Build up a list of frequencies

frequencies = []
for value in unique_values:
frequency = L.count(value)
frequencies.append(frequency)

# Find the mode

max_frequency = max(frequencies)
max_frequency_pos = frequencies.index(max_frequency)
mode}=\mathrm{ = unique_values[max_frequency_pos]
print("Mode is", mode)

```
e

An Roinn Oideachais
Department of Education
(c) (i) (0)```

