Supporting the Professional Learning of School Leaders and Teachers

Leaving Certificate Agricultural Science

Information Processing 2 Jan/Feb 2024

Introducing Oide

Tacú leis an bhFoghlaim
Ghairmiúil i measc Ceannairí
Scoile agus Múinteoirí

Supporting the Professional Learning of School Leaders and Teachers

Contact Details

General:

Email: info@oide.ie
Web: www.oide.ie
X: @oide_Ireland

Ag Science:

Email: <u>agsciencewebinar@oide.ie</u> School support: <u>postprimarysupport@oide.ie</u>

X: @Oide PP STEM

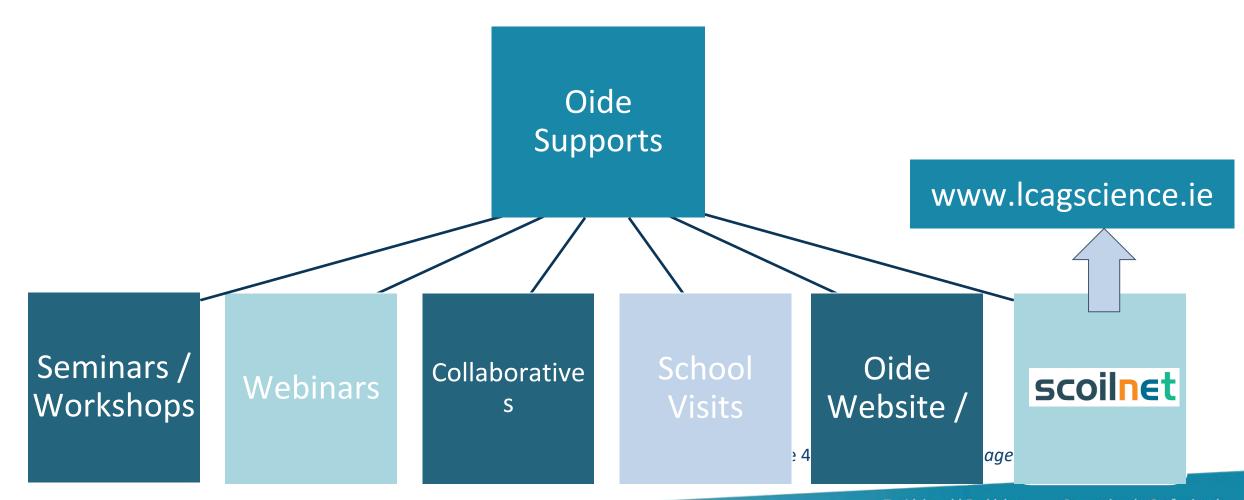
Science Resources for Teachers

Scoilnet supports primary and post primary teachers in sharing and finding useful classroom resources: www.scoilnet.ie

scoilnet

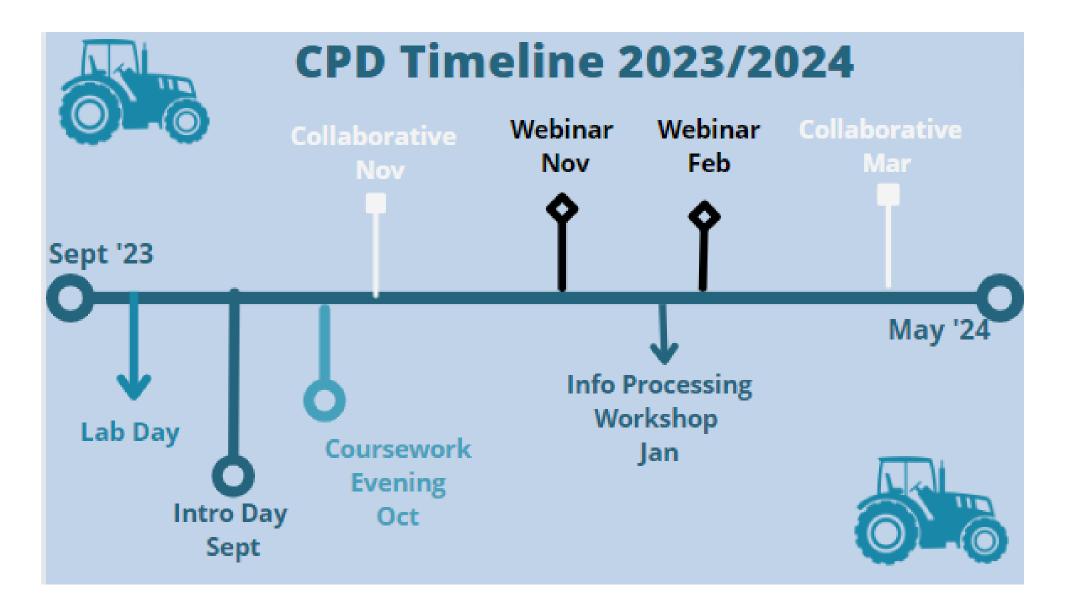
Leaving Certificate Agricultural Science : www.lcagscience.ie

Leaving Certificate Biology: www.pdstbiology.com/


Leaving Certificate Chemistry: pdst.ie/post-primary/sc/chemistry

Leaving Certificate Physics: https://pdst.ie/sc/physics

Junior Cycle Science: https://www.jct.ie/science/science


Oide Supports

Tacú leis an bhFoghlaim Ghairmiúil i measc Ceannairí Scoile agus Múinteoirí Supporting the Professional Learning of School Leaders and Teachers

Overview of the Evening

Time	Outline
19:00 - 19:50	Session 1: Analysing data sets: exploring different types of graphs and data analysis that students might use
19:55 - 20:05	Tea/Coffee
20:05- 20:55	Session 2: Processing information from exam papers in tabular, graphical or pictorial form
20:55 - 21:00	Evaluation

Key Messages

Enhance and develop teachers' ability to use pedagogical approaches that better enable and better support students to:

- Interpret and analyse information in its various forms (numerical, graphical, written and pictorial) and see its relevance to their own studies.
 - Use information in pictorial format to spark curiosity and act as a stimulus for hypothesising or for assessment.
- Engage with data in a diversity of forms developing students' ability to present their own primary data from investigations in varied formats.

Learning Intentions

By the end of this session participants will:

Enhance and develop their ability to use pedagogical approaches incorporating information presented in multiple formats to support teaching, learning and assessment and development of key skills.

Gain an understanding of the range of statistical analysis students have from engaging with Junior Cycle Maths.

Develop an understanding of a range of possible data analysis methods that students could engage with in their investigations.

Supporting the Professional Learning of School Leaders and Teachers

Session 1

Analysing data sets: exploring different types of graphs and data analysis that students might use

Recap on Information Processing 1

In March 2023 teachers worked on:

- Presenting data: features of quality
- Summarising scientific texts
- Referencing scientific texts
- Evaluating the reliability and validity of a scientific claim

Rationale

"Candidates should consider how best to represent their data. They should choose the type of graph, table, or other presentations form which best suits the data they wish to display. Replication of similar information in many formats should be avoided. One judiciously chosen representation (or perhaps two – one being tabular and the other graphical) is much more effective. "

(SEC, 2021 p5)

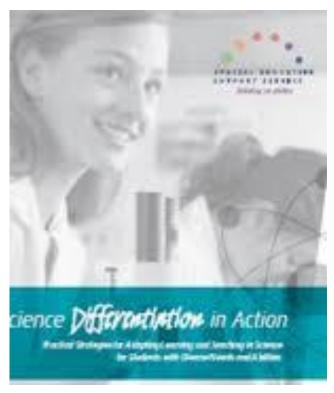
Coimisiún na Scrúduithe Stáit State Examinations Commission

Leaving Certificate Coursework

Information note for four Leaving Certificate subjects with new subject specifications

- Agricultural Science Individual Investigative Study
- Computer Science Coursework Project
- Economics Student Research Project
- · Physical Education Physical Activity Project

Prior Knowledge - JC Key Skills



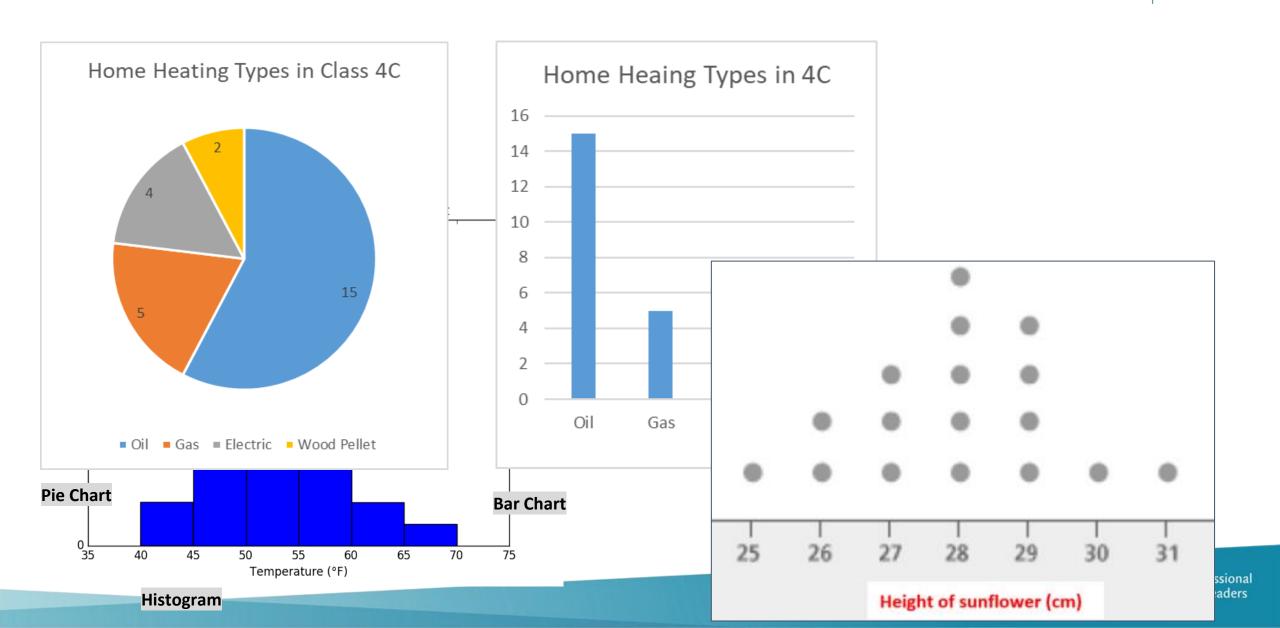
Skills Pathways in Investigations

Skill Progression

	Draw/discuss work	Compare results	Use different ways	Present results
	in everyday terms		to display results	clearly
		Record		
Analysing	Record (with	independently in	Make statements	Explain results
Evidence	support) in tables provided by the teacher	tables provided by the teacher	about what the results show	clearly

(NCSE, 2008, p. 108)

Prior Knowledge - JC Maths



SP.3 carry out a statistical investigation which includes the ability to:

- a. generate a statistical question
- plan and implement a method to generate and/or source unbiased, representative data, and present this data in a frequency table
- c. classify data (categorical, numerical)
- d. select, draw and interpret appropriate graphical displays of univariate data, including pie charts, bar charts, line plots, histograms (equal intervals), ordered stem and leaf plots, and ordered back-to-back stem and leaf plots
- e. select, calculate and interpret appropriate summary statistics to describe aspects
 of univariate data. Central tendency: mean (including of a grouped frequency
 distribution), median, mode. Variability: range
- f. evaluate the effectiveness of different graphical displays in representing data
- g. discuss misconceptions and misuses of statistics
- h. discuss the assumptions and limitations of conclusions drawn from sample data or graphical/numerical summaries of data

Prior Knowledge: JC Maths Graphs

Prior Knowledge: JC Maths Graphs

Energy usage in kWh each of 26 days of November in our school

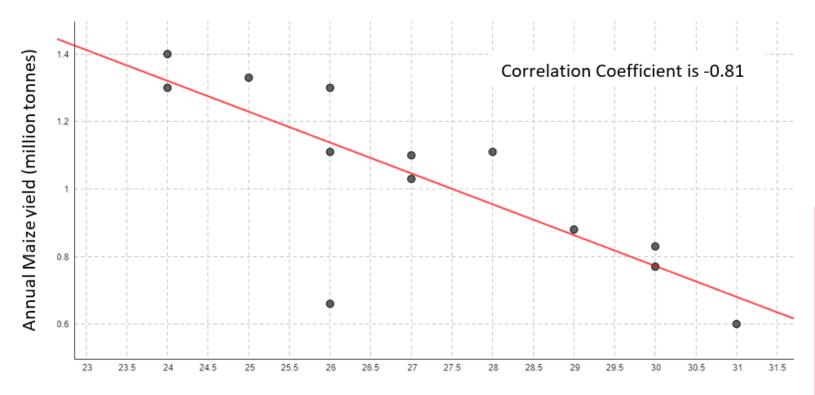
65	58	72	78	68	69	81	
58	74	59	67	76	65	73	
66	74	67	91	76	69	69	
62	64	77	73	83			

Key: 3|1 means 31

Stem and Leaf Plot

58 values in	order 58	59	62	64	65	65
66	67	67	68	69	69	69
72	73	73	74	74	76	76
77	78	81	83	91		

Energy usage in kWh each of 26 days of November in our school


	65	65	r	Bu	ildi	ng						
	69	69	-									-
	76	76		5	6	7	7	8	9	9	9	
·			-	4	4	6	6	7	8			

Key: 5|8 means 58 kWh

Future Learning - LC Maths, SC Sciences, Economics....

December Temperature versus Maize Yield in Nakuru County, Kenya

Average December daily max. temp. (°C)

- determine the relationship between variables using scatterplots
- recognise that correlation is a value from -1 to +1 and that it measures the extent of the linear relationship between two variables

Prior Knowledge - JC Maths

INVESTIGA

- Is the statistical q concise?
- What are the vari be measured to a
- Is it possible to co answer the quest
- Is it possible to di required data in a
- Is an experiment, study being cond

ORGANISE AND MANAGE DATA

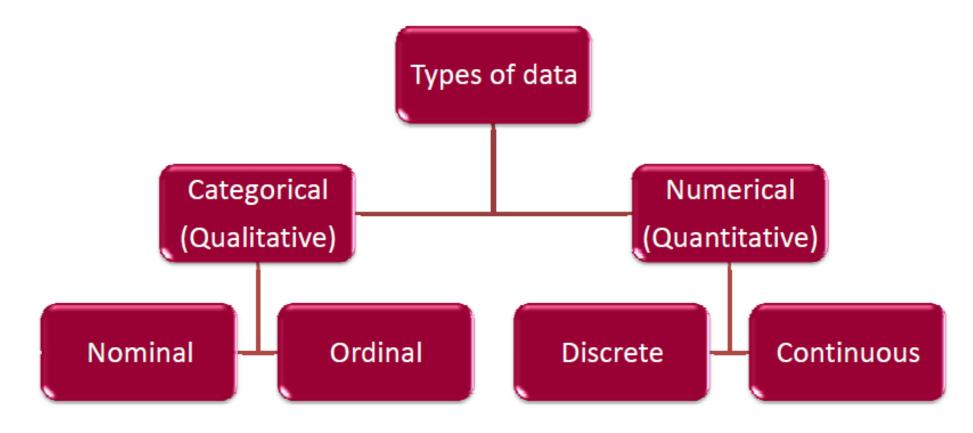
- Is the data displayed in a table, diagram, chart and/or graph?
- Is the data summarised numerically, graphically, diagrammatically and/or with words?
- Is the display/summary method most appropriate?

ORGANISE AND MANAGE DATA

- Is the data displayed in a table, diagram, chart and/or graph?
- Is the data summarised numerically, graphically, diagrammatically and/or with words?
- Is the display/summary method most appropriate?

ANALYSE AND INTERPRET DATA

- Is the data, display and/or summary connected to the statistical question?
- How could the investigation be improved?



rofessional ol Leaders

Types of Data

(Project Maths Development Team, 2008)

How data should be represented depends on the type of data, and the purpose of the investigation.

		Bar chart	Frequency Table	Histogram	Line of fit	Pie chart	Scatter plot	Stem plot
Single	Categories	✓	✓			✓		
variable	Discrete Variable	√	√			√		✓
	Continuous Variable		√	✓				√
Paired	Discrete		✓		✓		✓	
Variable	Continuous		√		√		✓	

Students could try out different representations, using bar charts, stem plots, histograms, scatter plots etc. and see which is best and why. Using software here could help.

Stem-and-leaf diagrams – Rationale for use

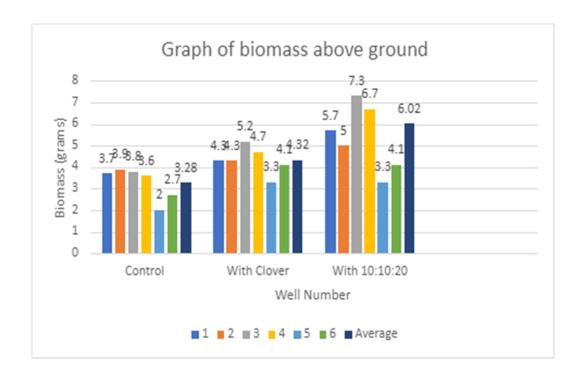
- All data points are displayed
- Students study stem and leaf plots from 1st year (Maths)
- Applicable to many SPAs on the course, and therefore common variables measured in the IIS
- Compares 2 data-sets side by side for brief analysis of range/spread/outliers
- Offers a second type of visual representation that is not just repeating what can be seen on a bar chart
- Can be typed up in Word easily, no need for Excel

A student completed an IIS by measuring the biomass of PRG above the ground under 3 different conditions:

- a) no addition (the control)
- b) with clover
- c) with 10-10-20

The student then decided to analyse the data for all 3 treatments to identify:

- 1-The median value
- 2-the maximum and minimum values
- 3-any outliers
- 4-compare the range of data



Ag Science Example 1

	Sample Number	Biomass above ground	Average
Control	1	3.7 grams	
	2	3.9 grams	
	3	3.8 grams	3.28
	4	3.6 grams	grams
	5	2.0 grams	
	6	2.7 grams	
	Sample	Biomass above	Average
	Number	ground	111111117
Grass with	1	4.3 grams	
clover	2	4.3 grams	
	3	5.2 grams	4.32
	4	4.7 grams	grams
	5	3.3 grams	
	6	4.1 grams	
	Sample	Biomass above	Average
	Number	ground	
Grass with	1	5.7 grams	
10:10:20	2	5.0 grams	***************************************
111	3	7.3 grams	6.02
	4	6.7 grams	grams
	5	5.3 grams	
	6	6.1 grams	

Spreadsheet software's recommended chart (first on list).

What does it tell us?

Ag Science Example 1

	Sample Number	Biomass above ground	Average
Control	1	3.7 grams	
	2	3.9 grams	
	3	3.8 grams	3.28
	4	3.6 grams	grams
	5	2.0 grams	
	6	2.7 grams	
	Sample	Biomass above	Average
	Number	ground	117
Grass with	1	4.3 grams	
clover	2	4.3 grams	
	3	5.2 grams	4.32
	4	4.7 grams	grams
	5	3.3 grams	
	6	4.1 grams	
	Sample Number	Biomass above ground	Average
Grass with	1	5.7 grams	
10:10:20	2	5.0 grams	
	3	7.3 grams	6.02
	4	6.7 grams	grams
	5	5.3 grams	
	6	6.1 grams	

Stem and Leaf of biomass above the ground (g)

Control	Stem	Grass with clover
70	2	
6789	3	3
	4	1337
	5	2
	6	
	7	

Control	Stem	Grass with 10-10-20
70	2	
6789	3	
	4	
	5	037
	6	17
	7	3

Avg:3.28g

Avg:4.32g

Avg:3.28g

Avg:6.02g

Key: 3 | 3= 3.3

Stem and leaf diagram. What does it tell us?

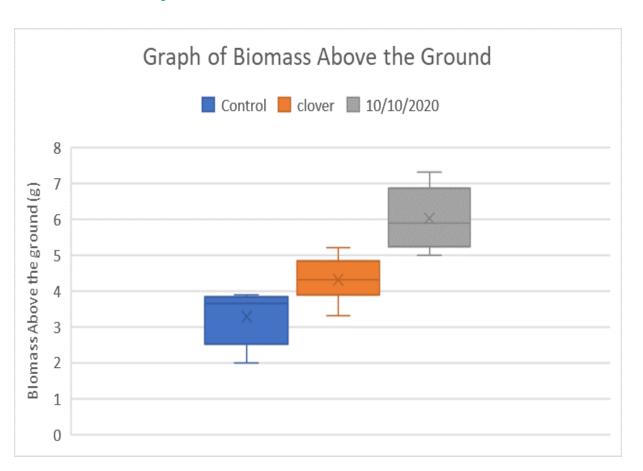
Box Plots – Rationale For Use

- Allows for display of statistical parameters on the graph without adding on another graph
- Can compare as many sets of data as you have or want
- Demonstrates innovation in IIS if used correctly
- Can be hand drawn easily, Excel not necessary
- Allows students to demonstrate strong maths skills
- Often used in Agricultural science research findings

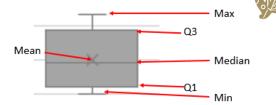
A student completed an IIS by measuring the biomass of PRG above the ground under 3 different conditions:

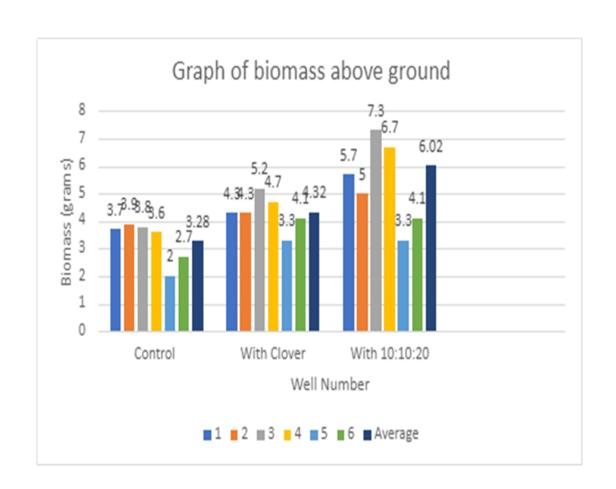
- a) no addition (the control)
- b) with clover
- c) with 10-10-20

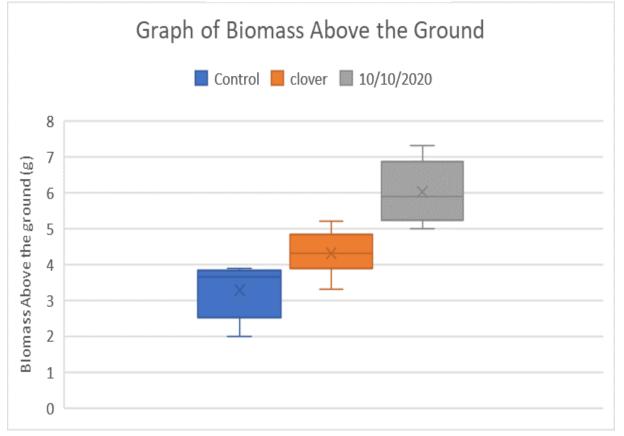
The student then carried out some basic statistical analysis to include -listing the min, max and median values


-calculating the mean and interquartile range

Sample No	Control	clover	fertilizer 10-10-20
1	3.7	4.3	5.7
2	3.9	4.3	5
3	3.8	5.2	7.3
4	3.6	4.7	6.7
5	2	3.3	5.3
6	2.7	4.1	6.1
Min	2	3.3	5
Max	3.9	5.2	7.3
Mean	3.28	4.31	6.01
Median	3.65	4.3	5.9
1st Q	2.52	3.9	5.22
3rd Q	3.825	4.825	6.85
IQR	1.3	0.925	1.625


Where do you see the data from the table represented on the graph?



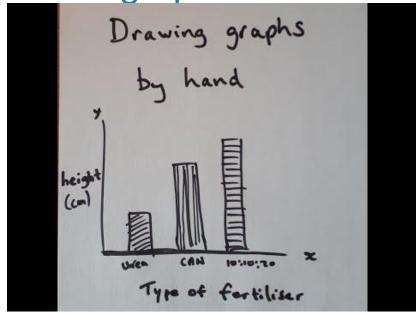

Sample No	Control	clover	fertilizer 10-10-20
1	3.7	4.3	5.7
2	3.9	4.3	5
3	3.8	5.2	7.3
4	3.6	4.7	6.7
5	2	3.3	5.3
6	2.7	4.1	6.1
Min	2	3.3	5
Max	3.9	5.2	7.3
Mean	3.28	4.31	6.01
Median	3.65	4.3	5.9
1st Q	2.52	3.9	5.22
3rd Q	3.825	4.825	6.85
IQR	1.3	0.925	1.625

Ag Science Example 2

Activity 1

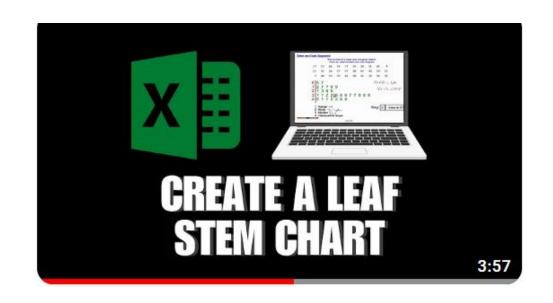
Part A: Choose appropriate graph(s) and calculation(s) to represent the data and question the reliability of the data?

Part B: Consider what SPAs or other investigations might be suitable to present using stem and leaf diagrams and box plots?



Supports to Help With Data Analysis

A "how-to" Guide for Excel for Teachers and Students of Agricultural Science


A "how-to" Guide for uploading images of hand-drawn graphs

All five videos are available <u>here.</u> They progress in difficulty for the user as they go along.

Supports to Help With Data Analysis

How To Create A Box Plot In Microsoft Excel

How to create stem and leaf diagrams in Excel

How to create box plots in Excel

Coffee Break

Supporting the Professional Learning of School Leaders and Teachers

Session 2

Processing information from exam papers in table, graphical or pictorial format

Rationale

"To support candidates' understanding of the use of secondary data, a range of secondary data sources could be incorporated into classroom learning. This will help to familiarise candidates with their use and how they should be interpreted, understood and analysed."

(SEC, 2021 p5)

Coimisiún na Scrúduithe Stáit State Examinations Commission

Leaving Certificate Coursework

Information note for four Leaving Certificate subjects with new subject specifications

- Agricultural Science Individual Investigative Study
- Computer Science Coursework Project
- Economics Student Research Project
- Physical Education Physical Activity Project

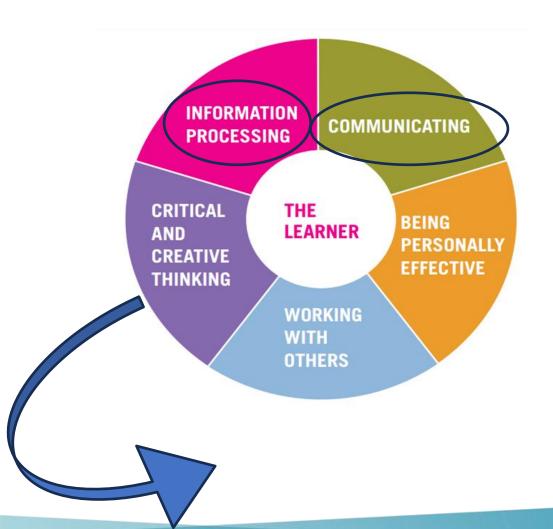
Rationale

Learning Outcome 1.4

"Read and evaluate scientific information related to agriculture, drawing on a variety of sources: media, websites, agri-food event and other agricultural resources-including people involved in the agri-food industry."

(NCCA, Ag Science Specification, 2019, p. 17)

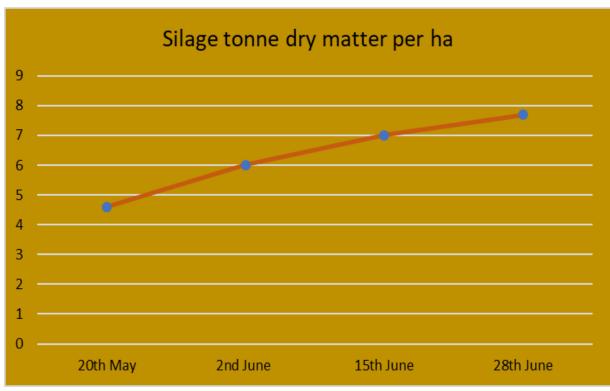
Information given in table format

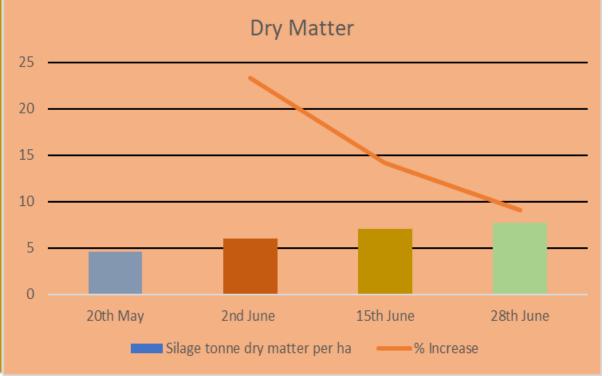

Silage Quality				
% Dry Matter Digestibility (DMD %)	75	70	65	60
Harvest date	20 May	2 June	15 June	28 June
Silage tonne Dry Matter per ha	4.6	6.0	7.0	7.7
Intake (kg/day)	9.0	8.3	7.6	7.0
Liveweight gain (kg/day)	0.83	0.66	0.49	0.31

(Adapted from Teagasc, 2021)

SEC, 2022 HL Paper,Q12 a

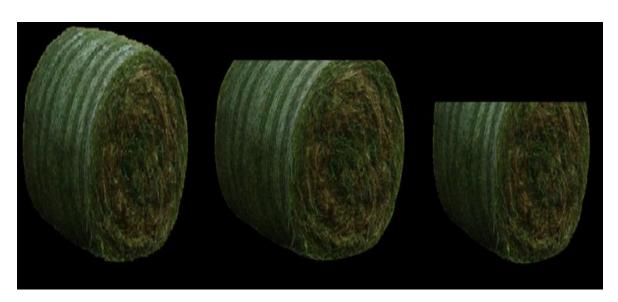
Engaging with Key Skills





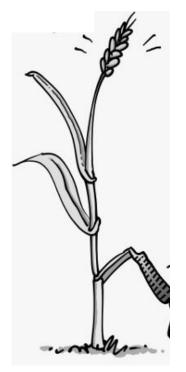
Change the format

Silage Quality				
% Dry Matter Digestibility (DMD %)	75	70	65	60
Harvest date	20 May	2 June	15 June	28 June
Silage tonne Dry Matter per ha	4.6	6.0	7.0	7.7
Intake (kg/day)	9.0	8.3	7.6	7.0
Liveweight gain (kg/day)	0.83	0.66	0.49	0.31


(Adapted from Teagasc, 2021)

Change it again

Regular silage bale


May 20th: 75% useable by the cow

June 28th: 75% useable by the cow

Silage Quality				
% Dry Matter Digestibility (DMD %)	75	70	65	60
Harvest date	20 May	2 June	15 June	28 June
Silage tonne Dry Matter per ha	4.6	6.0	7.0	7.7
Intake (kg/day)	9.0	8.3	7.6	7.0
Liveweight gain (kg/day)	0.83	0.66	0.49	0.31

(Adapted from Teagasc, 2021)

May 20th: 25% undigestible

June 28th: 40% undigestible

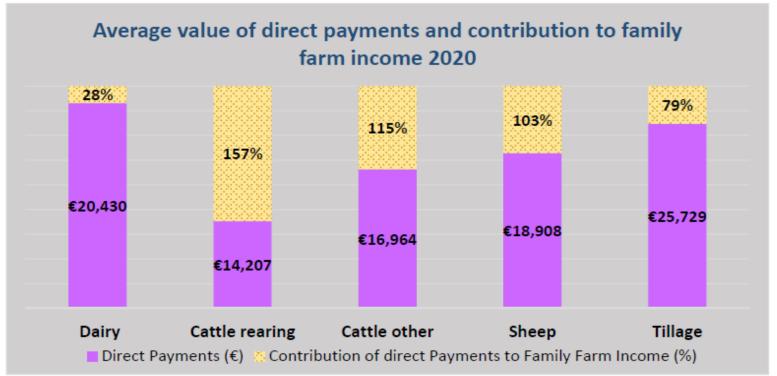
And again...

What is the key learning? Factors that affect silage quality are

- Dry Matter %
- Dry Matter digestibility.
- Cutting Date

This affects:
Intake and Liveweight gain

				ı
Silage Quality				
% Dry Matter Digestibility (DMD %)	75	70	65	60
Harvest date	20 May	2 June	15 June	28 June
Silage tonne Dry Matter per ha	4.6	6.0	7.0	7.7
Intake (kg/day)	9.0	8.3	7.6	7.0
Liveweight gain (kg/day)	0.83	0.66	0.49	0.31


(Adapted from Teagasc, 2021)

Information given in graphical format

(c) Analyse the graph on the contributions direct payments from the EU made to the family farm income per agricultural enterprise.

(Adapted from Teagasc National Farm Survey, 2021)

(i) Identify which enterprise relies heaviest on direct payments.State a reason for your answer.

SEC, 2022 HL Paper,Q17 c

Approach to a dataset

Taking a dataset and analyse the data. Answering questions such as: What trends do you see? What do you think is causing this trend? Are there any outliers, anomalies? What statistical analysis could help your analysis? Use the acronym STAMPE for example

Day what you see Manipulate data

Information provided in pictorial format

- (c) Analyse the picture of calf housing below and answer the questions which follow.
 - (i) Identify **three** aspects of the shed which make it a suitable environment for calves and provide a reason for each aspect identified.

SEC, 2022 HL Paper,Q14 c

Pitfalls to avoid when using pictures

- 1. Ensure they are not hazy or pixelated.
- 2. Ensure that they are not out of shape.
- 3. Check that the angle makes the photograph real e.g. overhead shots confuse.
- 4. Ensure that there is no ambiguity.
- 5. Consider copyright issues

Tips for using pictures as a resource

 Get high quality photos e.g. Teagasc is a good source.
 Get photos that show exactly what you are looking for. There are no extras in the photo.
 Use the photo to scaffold the questions starting with easy, identify but lead to higher order questions.

4. Clarify anything that might be uncertain with captions, labels or extra information

Photos: to build curiosity

Examine the photograph shown as a prompt.

What do you notice?

What further questions do you have?

Activity 2

Part A: Work collaboratively to engage with photo-based activities.

Part B: Consider what areas of the specification might you use of data in various formats to support teaching, learning and assessment in the agricultural science classroom

Feedback

What was your experience of engaging with information processing in different formats this evening?

How have you previously engaged with information processing in your classroom?

What practices from this evening's workshop will you use with your students?

Supports to help with IIS

A document containing helpful information for teachers and students about completing the written report of the Individual Investigative Study.

It contains tips for completing each section as well as links to:

- Referencing tools
- Literacy supports
- SEC Information Note & Marking Criteria
- Supportive informative videos

Key Messages

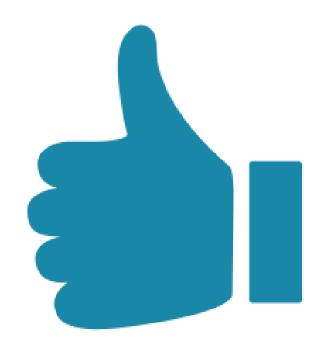
Enhance and develop teachers' ability to use pedagogical approaches that better enable and better support students to:

- Interpret and analyse information in its various forms (numerical, graphical, written and pictorial) and see its relevance to their own studies.
 - Use information in pictorial format to spark curiosity and act as a stimulus for hypothesising or for assessment.
- Engage with data in a diversity of forms developing students' ability to present their own primary data from investigations in varied formats.

Learning Intentions

By the end of this session participants will:

Enhance and develop their ability to use pedagogical approaches incorporating information presented in multiple formats to support teaching, learning and assessment and development of key skills.


Gain an understanding of the range of statistical analysis students have from engaging with Junior Cycle Maths.

Develop an understanding of a range of possible data analysis methods that students could engage with in their investigations.

Evaluation

https://forms.gle/DRcYyMeyk7WF2y7c8

References

Image on slide 38:https://emilysquotes.com/if-everyone-is-thinking-alike-then-somebody-isnt-thinking/

Image on slide 43:

https://twitter.com/Nicolelogier22/status/1598705081645379584/photo/1

Image on slide 45:

https://news.cgtn.com/news/3d596a4d7951444e/share_p.html

Image on slide 46: https://www.teagasc.ie/news--events/daily/grassland/grassland---mixing-it-up.php

Image on slide 47: https://www.farmersjournal.ie/beef/breeding-and-health/when-to-intervene-when-calving-the-cow-598768