
Post Video Resource
Episode 3

Python
Programming
Challenge

Learning Intentions
By the end of this activity, students will:

Apply Python programming concepts to solve real-
world problems.
Develop logical thinking and debugging skills.
Understand how loops, conditionals, and functions
work in Python.
Gain confidence in writing and troubleshooting their
own Python code.

Success Criteria
Students will demonstrate success by:

Writing Python scripts that correctly implement given
problem statements.
Debugging errors effectively and refining their code.
Using appropriate programming structures (e.g., loops,
functions) efficiently.
Explaining their thought process and reasoning behind
their solutions.

Subject
Relevant Learning
Outcomes

Key Skills

Computer Science
(Leaving Cert)

- Design, write, test, and
debug programs using a
high-level language
(Python). - Implement
solutions using variables,
loops, conditionals, and
functions. - Apply
problem-solving
techniques in
programming tasks.

- Critical & Creative
Thinking (Developing
solutions to coding
problems) - Managing
Information & Thinking
(Logical reasoning and
debugging) - Being
Numerate (Applying
computational thinking
skills)

Mathematics

- Use computational
thinking to solve
numerical and logical
problems. - Understand
and apply algorithmic
thinking to problem-
solving.

- Being Numerate (Applying
mathematical reasoning in
Python) - Working with
Others (Collaborating on
problem-solving
techniques)

Digital Technology
(Junior Cycle)

- Explore how algorithms
and programming can be
used to solve problems. -
Develop programs that
demonstrate logic and
structured thinking.

- Communicating
(Explaining code in written
and verbal formats) - Being
Creative (Developing
original coding solutions)

Activity Breakdown
Step 1: Warm-up Challenge (10-15 minutes)

Before jumping into coding, ask students to predict outputs of
short Python snippets involving:

Variable assignments
If-statements
Loops
Functions

Example:

Question: What will this print?
Purpose: Reinforce fundamental concepts and prepare for coding
tasks.

Step 2: Coding Challenges (40-50 minutes)
Students complete a tiered set of coding problems, progressing from
basic to advanced.

💡 Beginner Challenges (Fundamentals – 10-15 minutes each)
Sum of a List1.

Write a program that takes a list of numbers and returns their
sum.
Example Input: [3, 5, 2, 8] → Output: 18
Concepts: Loops, variables

Even or Odd?2.
Ask the user to enter a number and determine whether it’s even
or odd.
Example Input: 9 → Output: "Odd"
Concepts: Conditionals, user input

💡 Intermediate Challenges (Applying Concepts – 15-20 minutes each)
3. Guess the Number Game

Generate a random number between 1-20, and let the user guess it,
providing hints.
Example Interaction

Concepts: Loops, conditionals, random module

Basic Calculator1.
Build a Python program that performs basic arithmetic
operations (add, subtract, multiply, divide).
Example Input: 5 * 3 → Output: 15
Concepts: User input, functions

💡 Advanced Challenge (Creative Thinking – 30+ minutes)
5. Text-Based Adventure Game

Students create a simple interactive text-based game where users
make choices to progress through a story.
Example

Concepts: Conditionals, functions, user input

Step 3: Debugging & Code Review (20 minutes)

Students exchange code with a peer to test and debug.1.
Checklist for debugging:2.
Does the program run without errors?3.
Are variables named clearly?4.
Are loops and conditionals used efficiently?5.

Step 4: Class Showcase & Reflection (15 minutes)
Volunteers present their solutions, explaining their thought
process and debugging challenges.
Reflection Questions:

What was the most challenging part?
How would you improve your code?
Where could these coding skills be applied in real life?

Extension Activity (Optional)
Students research a real-world Python application (e.g., AI,
web development, cybersecurity) and write a short report
or presentation on its impact.

